

 Navigation

 	
 index

 	
 next |

 	PyFITS 3.0.13.dev documentation

PyFITS Documentation

Contents

	PyFITS Users Guide
	Introduction

	Quick Tutorial

	FITS Headers

	Image Data

	Table Data

	Verification

	Less Familiar Objects

	Miscellaneous Features

	Reference Manual

	API Documentation
	Opening Files

	HDU Lists

	Header Data Units

	Headers

	Cards

	Tables

	Images

	Exceptions and Utility Classes

	Verification options

	PyFITS Developers Guide
	Getting the source code

	Maintenance

	Releasing

 Copyright 2013, J. C. Hsu, Paul Barrett, Christopher Hanley, James Taylor, Michael Droettboom, Erik M. Bray.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyFITS 3.0.13.dev documentation

PyFITS Users Guide

	Introduction
	Installation

	User Support

	Quick Tutorial
	Reading and Updating Existing FITS Files
	Opening a FITS file

	Working With a FITS Header

	Working With Image Data

	Working With Table Data

	Save File Changes

	Creating a New FITS File
	Creating a New Image File

	Creating a New Table File

	Convenience Functions

	FITS Headers
	Header of an HDU

	The Header Attribute
	Value Access and Updating

	COMMENT, HISTORY, and Blank Keywords

	Card Images

	Card List

	CONTINUE Cards

	HIERARCH Cards

	Image Data
	Image Data as an Array

	Scaled Data
	Reading Scaled Image Data

	Writing Scaled Image Data

	Data Sections

	Table Data
	Table Data as a Record Array
	What is a Record Array?

	Metadata of a Table

	Reading a FITS Table

	Table Operations
	Selecting Records in a Table

	Merging Tables

	Appending Tables

	Scaled Data in Tables

	Creating a FITS Table
	Column Creation

	Verification
	FITS Standard

	Verification Options

	Verifications at Different Data Object Levels
	Verification at HDUList

	Verification at Each HDU

	Verification at Each Card

	Verification using the FITS Checksum Keyword Convention

	Less Familiar Objects
	ASCII Tables
	Creating an ASCII Table

	Variable Length Array Tables
	Creating a Variable Length Array Table

	Random Access Groups
	Header and Summary

	Data: Group Parameters

	Data: Image Data

	Creating a Random Access Group HDU

	Compressed Image Data
	Header and Summary

	Data

	Creating a Compressed Image HDU

	Miscellaneous Features
	Warning Messages

	Reference Manual
	Converting a 3-color image (JPG) to separate FITS images

 Copyright 2013, J. C. Hsu, Paul Barrett, Christopher Hanley, James Taylor, Michael Droettboom, Erik M. Bray.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyFITS 3.0.13.dev documentation

 	PyFITS Users Guide

Introduction

The PyFITS module is a Python library providing access to FITS files. FITS
(Flexible Image Transport System) is a portable file standard widely used in
the astronomy community to store images and tables.

Installation

PyFITS requires Python version 2.3 or newer. PyFITS also requires the numpy
module. Information about numpy can be found at:

http://numpy.scipy.org/

To download numpy, go to:

http://sourceforge.net/project/numpy

PyFITS’s source code is pure Python. It can be downloaded from:

http://www.stsci.edu/resources/software_hardware/pyfits/Download

PyFITS uses Python’s distutils for its installation. To install it, unpack the
tar file and type:

python setup.py install

This will install PyFITS in Python’s site-packages directory. If permissions do
not allow this kind of installation PyFITS can be installed in a personal
directory using one of the commands below. Note, that PYTHONPATH has to be set
or modified accordingly. The three examples below show how to install PyFITS in
an arbitrary directory <install-dir> and how to modify PYTHONPATH.

python setup.py install --home=<install-dir>
setenv PYTHONPATH <install-dir>/lib/python

python setup.py install --prefix=<install-lib>
setenv PYTHONPATH <install-dir>lib/python2.3/site-packages

In this guide, we’ll assume that the reader has basic familiarity with Python.
Familiarity with numpy is not required, but it will help to understand the data
structures in PyFITS.

User Support

The official PyFITS web page is:

http://www.stsci.edu/resources/software_hardware/pyfits

If you have any question or comment regarding PyFITS, user support is available
through the STScI Help Desk:

* E-mail: help@stsci.edu
* Phone: (410) 338-1082

 Copyright 2013, J. C. Hsu, Paul Barrett, Christopher Hanley, James Taylor, Michael Droettboom, Erik M. Bray.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyFITS 3.0.13.dev documentation

 	PyFITS Users Guide

Quick Tutorial

This chapter provides a quick introduction of using PyFITS. The goal is to
demonstrate PyFITS’s basic features without getting into too much detail. If
you are a first time user or an occasional PyFITS user, using only the most
basic functionality, this is where you should start. Otherwise, it is safe to
skip this chapter.

After installing numpy and PyFITS, start Python and load the PyFITS library.
Note that the module name is all lower case.

>>> import pyfits

Reading and Updating Existing FITS Files

Opening a FITS file

Once the PyFITS module is loaded, we can open an existing FITS file:

>>> hdulist = pyfits.open('input.fits')

The open() function has several optional arguments which will be discussed in a
later chapter. The default mode, as in the above example, is “readonly”. The
open method returns a PyFITS object called an HDUList which is a Python-like
list, consisting of HDU objects. An HDU (Header Data Unit) is the highest level
component of the FITS file structure. So, after the above open call,
hdulist[0] is the primary HDU, hdulist[1], if any, is the first
extension HDU, etc. It should be noted that PyFITS is using zero-based
indexing when referring to HDUs and header cards, though the FITS standard
(which was designed with FORTRAN in mind) uses one-based indexing.

The HDUList has a useful method HDUList.info(), which summarizes the
content of the opened FITS file:

>>> hdulist.info()
Filename: test1.fits
No. Name Type Cards Dimensions Format
0 PRIMARY PrimaryHDU 220 () int16
1 SCI ImageHDU 61 (800, 800) float32
2 SCI ImageHDU 61 (800, 800) float32
3 SCI ImageHDU 61 (800, 800) float32
4 SCI ImageHDU 61 (800, 800) float32

After you are done with the opened file, close it with the HDUList.close()
method:

>>> hdulist.close()

The headers will still be accessible after the HDUlist is closed. The data may
or may not be accessible depending on whether the data are touched and if they
are memory-mapped, see later chapters for detail.

Working with large files

The pyfits.open() function supports a memmap=True argument that cause
the array data of each HDU to be accessed with mmap, rather than being read
into memory all at once. This is particularly useful for working with very
large arrays that cannot fit entirely into physical memory.

This has minimal impact on smaller files as well, though some operations, such
as reading the array data sequentially, may incur some additional overhead. On
32-bit systems arrays larger than 2-3 GB cannot be mmap’d (which is fine,
because by that point you’re likely to run out of physical memory anyways), but
64-bit systems are much less limited in this respect.

Working With a FITS Header

As mentioned earlier, each element of an HDUList is an HDU object with
attributes of header and data, which can be used to access the header keywords
and the data.

The header attribute is a Header instance, another PyFITS object. To get the
value of a header keyword, simply do (a la Python dictionaries):

>>> hdulist[0].header['targname']
'NGC121'

to get the value of the keyword targname, which is a string ‘NGC121’.

Although keyword names are always in upper case inside the FITS file,
specifying a keyword name with PyFITS is case-insensitive, for user’s
convenience. If the specified keyword name does not exist, it will raise a
KeyError exception.

We can also get the keyword value by indexing (a la Python lists):

>>> hdulist[0].header[27]
96

This example returns the 28th (like Python lists, it is 0-indexed) keyword’s
value, an integer, 96.

Similarly, it is easy to update a keyword’s value in PyFITS, either through
keyword name or index:

>>> prihdr = hdulist[0].header
>>> prihdr['targname'] = 'NGC121-a'
>>> prihdr[27] = 99

Use the above syntax if the keyword is already present in the header. If the
keyword might not exist and you want to add it if it doesn’t, use the
Header.update() method:

>>> prihdr.update('observer', 'Edwin Hubble')

Special methods must be used to add comment or history records:

>>> prihdr.add_history('I updated this file 2/26/09')
>>> prihdr.add_comment('Edwin Hubble really knew his stuff')

A header consists of Card objects (i.e. the 80-column card-images specified
in the FITS standard). Each Card normally has up to three parts: key, value,
and comment. To see the entire list of cardimages of an HDU, use the
Header.ascardlist() method :

>>> print prihdr.ascardlist()[:3]
SIMPLE = T / file does conform to FITS standard
BITPIX = 16 / number of bits per data pixel
NAXIS = 0 / number of data axes

Only the first three cards are shown above.

To get a list of all keywords, use the CardList.keys() method of the card
list:

>>> prihdr.ascardlist().keys()
['SIMPLE', 'BITPIX', 'NAXIS', ...]

Working With Image Data

If an HDU’s data is an image, the data attribute of the HDU object will return
a numpy ndarray object. Refer to the numpy documentation for details on
manipulating these numerical arrays.

>>> scidata = hdulist[1].data

Here, scidata points to the data object in the second HDU (the first HDU,
hdulist[0], being the primary HDU) in hdulist, which corresponds to
the ‘SCI’ extension. Alternatively, you can access the extension by its
extension name (specified in the EXTNAME keyword):

>>> scidata = hdulist['SCI'].data

If there is more than one extension with the same EXTNAME, EXTVER’s value needs
to be specified as the second argument, e.g.:

>>> scidata = hdulist['sci',2].data

The returned numpy object has many attributes and methods for a user to get
information about the array, e. g.:

>>> scidata.shape
(800, 800)
>>> scidata.dtype.name
'float32'

Since image data is a numpy object, we can slice it, view it, and perform
mathematical operations on it. To see the pixel value at x=5, y=2:

>>> print scidata[1, 4]

Note that, like C (and unlike FORTRAN), Python is 0-indexed and the indices
have the slowest axis first and fast axis last, i.e. for a 2-D image, the fast
axis (X-axis) which corresponds to the FITS NAXIS1 keyword, is the second
index. Similarly, the 1-indexed sub-section of x=11 to 20 (inclusive) and y=31
to 40 (inclusive) would be given in Python as:

>>> scidata[30:40, 10:20]

To update the value of a pixel or a sub-section:

>>> scidata[30:40, 10:20] = scidata[1, 4] = 999

This example changes the values of both the pixel [1, 4] and the sub-section
[30:40, 10:20] to the new value of 999. See the Numpy documentation [http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html] for
more details on Python-style array indexing and slicing.

The next example of array manipulation is to convert the image data from counts
to flux:

>>> photflam = hdulist[1].header['photflam']
>>> exptime = prihdr['exptime']
>>> scidata *= photflam / exptime

This example performs the math on the array in-place, thereby keeping the
memory usage to a minimum.

If at this point you want to preserve all the changes you made and write it to
a new file, you can use the HDUList.writeto() method (see below).

Working With Table Data

If you are familiar with the record array in numpy, you will find the table
data is basically a record array with some extra properties. But familiarity
with record arrays is not a prerequisite for this Guide.

Like images, the data portion of a FITS table extension is in the .data
attribute:

>>> hdulist = pyfits.open('table.fits')
>>> tbdata = hdulist[1].data # assuming the first extension is a table

To see the first row of the table:

>>> print tbdata[0]
(1, 'abc', 3.7000002861022949, 0)

Each row in the table is a FITS_rec object which looks like a (Python) tuple
containing elements of heterogeneous data types. In this example: an integer, a
string, a floating point number, and a Boolean value. So the table data are
just an array of such records. More commonly, a user is likely to access the
data in a column-wise way. This is accomplished by using the field() method. To
get the first column (or field) of the table, use:

>>> tbdata.field(0)
array([1, 2])

A numpy object with the data type of the specified field is returned.

Like header keywords, a field can be referred either by index, as above, or by
name:

>>> tbdata.field('id')
array([1, 2])

But how do we know what field names we’ve got? First, let’s introduce another
attribute of the table HDU: the .columns attribute:

>>> cols = hdulist[1].columns

This attribute is a ColDefs (column definitions) object. If we use the
ColDefs.info() method:

>>> cols.info()
 name:
 ['c1', 'c2', 'c3', 'c4']
 format:
 ['1J', '3A', '1E', '1L']
 unit:
 ['', '', '', '']
 null:
 [-2147483647, '', '', '']
 bscale:
 ['', '', 3, '']
 bzero:
 ['', '', 0.40000000000000002, '']
 disp:
 ['I11', 'A3', 'G15.7', 'L6']
 start:
 ['', '', '', '']
 dim:
 ['', '', '', '']

it will show all its attributes, such as names, formats, bscales, bzeros, etc.
We can also get these properties individually, e.g.:

>>> cols.names
['ID', 'name', 'mag', 'flag']

returns a (Python) list of field names.

Since each field is a numpy object, we’ll have the entire arsenal of numpy
tools to use. We can reassign (update) the values:

>>> tbdata.field('flag')[:] = 0

Save File Changes

As mentioned earlier, after a user opened a file, made a few changes to either
header or data, the user can use HDUList.writeto() to save the changes. This
takes the version of headers and data in memory and writes them to a new FITS
file on disk. Subsequent operations can be performed to the data in memory and
written out to yet another different file, all without recopying the original
data to (more) memory.

>>> hdulist.writeto('newimage.fits')

will write the current content of hdulist to a new disk file newfile.fits.
If a file was opened with the update mode, the HDUList.flush() method can
also be used to write all the changes made since open(), back to the
original file. The close() method will do the same for a FITS file opened
with update mode.

>>> f = pyfits.open('original.fits', mode='update')
... # making changes in data and/or header
>>> f.flush() # changes are written back to original.fits

Creating a New FITS File

Creating a New Image File

So far we have demonstrated how to read and update an existing FITS file. But
how about creating a new FITS file from scratch? Such task is very easy in
PyFITS for an image HDU. We’ll first demonstrate how to create a FITS file
consisting only the primary HDU with image data.

First, we create a numpy object for the data part:

>>> import numpy as np
>>> n = np.arange(100.0) # a simple sequence of floats from 0.0 to 99.9

Next, we create a PrimaryHDU object to encapsulate the data:

>>> hdu = pyfits.PrimaryHDU(n)

We then create a HDUList to contain the newly created primary HDU, and write to
a new file:

>>> hdulist = pyfits.HDUList([hdu])
>>> hdulist.writeto('new.fits')

That’s it! In fact, PyFITS even provides a short cut for the last two lines to
accomplish the same behavior:

>>> hdu.writeto('new.fits')

Creating a New Table File

To create a table HDU is a little more involved than image HDU, because a
table’s structure needs more information. First of all, tables can only be an
extension HDU, not a primary. There are two kinds of FITS table extensions:
ASCII and binary. We’ll use binary table examples here.

To create a table from scratch, we need to define columns first, by
constructing the Column objects and their data. Suppose we have two columns,
the first containing strings, and the second containing floating point numbers:

>>> import pyfits
>>> import numpy as np
>>> a1 = np.array(['NGC1001', 'NGC1002', 'NGC1003'])
>>> a2 = np.array([11.1, 12.3, 15.2])
>>> col1 = pyfits.Column(name='target', format='20A', array=a1)
>>> col2 = pyfits.Column(name='V_mag', format='E', array=a2)

Next, create a ColDefs (column-definitions) object for all columns:

>>> cols = pyfits.ColDefs([col1, col2])

Now, create a new binary table HDU object by using the PyFITS function
new_table():

>>> tbhdu = pyfits.new_table(cols)

This function returns (in this case) a BinTableHDU.

Of course, you can do this more concisely:

>>> tbhdu = pyfits.new_table(pyfits.ColDefs([pyfits.Column(name='target',
... format='20A',
... array=a1),
... pyfits.Column(name='V_mag',
... format='E',
... array=a2)]
...))

As before, we create a PrimaryHDU object to encapsulate the data:

>>> hdu = pyfits.PrimaryHDU(n)

We then create a HDUList containing both the primary HDU and the newly created
table extension, and write to a new file:

>>> thdulist = pyfits.HDUList([hdu, tbhdu])
>>> thdulist.writeto('table.fits')

If this will be the only extension of the new FITS file and you only have a
minimal primary HDU with no data, PyFITS again provides a short cut:

>>> tbhdu.writeto('table.fits')

Alternatively, you can append it to the hdulist we have already created from
the image file section:

>>> hdulist.append(tbhdu)

So far, we have covered the most basic features of PyFITS. In the following
chapters we’ll show more advanced examples and explain options in each class
and method.

Convenience Functions

PyFITS also provides several high level (“convenience”) functions. Such a
convenience function is a “canned” operation to achieve one simple task. By
using these “convenience” functions, a user does not have to worry about
opening or closing a file, all the housekeeping is done implicitly.

The first of these functions is getheader(), to get the header of an HDU.
Here are several examples of getting the header. Only the file name is required
for this function. The rest of the arguments are optional and flexible to
specify which HDU the user wants to get:

>>> from pyfits import getheader
>>> getheader('in.fits') # get default HDU (=0), i.e. primary HDU's header
>>> getheader('in.fits', 0) # get primary HDU's header
>>> getheader('in.fits', 2) # the second extension
the HDU with EXTNAME='sci' (if there is only 1)
>>> getheader('in.fits', 'sci')
the HDU with EXTNAME='sci' and EXTVER=2
>>> getheader('in.fits', 'sci', 2)
>>> getheader('in.fits', ('sci', 2)) # use a tuple to do the same
>>> getheader('in.fits', ext=2) # the second extension
the 'sci' extension, if there is only 1
>>> getheader('in.fits', extname='sci')
the HDU with EXTNAME='sci' and EXTVER=2
>>> getheader('in.fits', extname='sci', extver=2)
ambiguous specifications will raise an exception, DON'T DO IT!!
>>> getheader('in.fits', ext=('sci',1), extname='err', extver=2)

After you get the header, you can access the information in it, such as getting
and modifying a keyword value:

>>> from pyfits import getheader
>>> hdr = getheader('in.fits', 1) # get first extension's header
>>> filter = hdr['filter'] # get the value of the keyword "filter'
>>> val = hdr[10] # get the 11th keyword's value
>>> hdr['filter'] = 'FW555' # change the keyword value

For the header keywords, the header is like a dictionary, as well as a list.
The user can access the keywords either by name or by numeric index, as
explained earlier in this chapter.

If a user only needs to read one keyword, the getval() function can further
simplify to just one call, instead of two as shown in the above examples:

>>> from pyfits import getval
>>> flt = getval('in.fits', 'filter', 1) # get 1st extension's keyword
 # FILTER's value
>>> val = getval('in.fits', 10, 'sci', 2) # get the 2nd sci extension's
 # 11th keyword's value

The function getdata() gets the data of an HDU. Similar to getheader(), it
only requires the input FITS file name while the extension is specified through
the optional arguments. It does have one extra optional argument header. If
header is set to True, this function will return both data and header,
otherwise only data is returned.

>>> from pyfits import getdata
>>> dat = getdata('in.fits', 'sci', 3) # get 3rd sci extension's data
get 1st extension's data and header
>>> data, hdr = getdata('in.fits', 1, header=True)

The functions introduced above are for reading. The next few functions
demonstrate convenience functions for writing:

>>> pyfits.writeto('out.fits', data, header)

The writeto() function uses the provided data and an optional header to write
to an output FITS file.

>>> pyfits.append('out.fits', data, header)

The append() function will use the provided data and the optional header to
append to an existing FITS file. If the specified output file does not exist,
it will create one.

>>> from pyfits import update
>>> update(file, dat, hdr, 'sci') # update the 'sci' extension
>>> update(file, dat, 3) # update the 3rd extension
>>> update(file, dat, hdr, 3) # update the 3rd extension
>>> update(file, dat, 'sci', 2) # update the 2nd SCI extension
>>> update(file, dat, 3, header=hdr) # update the 3rd extension
>>> update(file, dat, header=hdr, ext=5) # update the 5th extension

The update() function will update the specified extension with the input
data/header. The 3rd argument can be the header associated with the data. If
the 3rd argument is not a header, it (and other positional arguments) are
assumed to be the extension specification(s). Header and extension specs can
also be keyword arguments.

Finally, the info() function will print out information of the specified FITS
file:

>>> pyfits.info('test0.fits')
Filename: test0.fits
No. Name Type Cards Dimensions Format
0 PRIMARY PrimaryHDU 138 () Int16
1 SCI ImageHDU 61 (400, 400) Int16
2 SCI ImageHDU 61 (400, 400) Int16
3 SCI ImageHDU 61 (400, 400) Int16
4 SCI ImageHDU 61 (400, 400) Int16

 Copyright 2013, J. C. Hsu, Paul Barrett, Christopher Hanley, James Taylor, Michael Droettboom, Erik M. Bray.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyFITS 3.0.13.dev documentation

 	PyFITS Users Guide

FITS Headers

In the next three chapters, more detailed information as well as examples will
be explained for manipulating the header, the image data, and the table data
respectively.

Header of an HDU

Every HDU normally has two components: header and data. In PyFITS these two
components are accessed through the two attributes of the HDU, .header and
.data.

While an HDU may have empty data, i.e. the .data attribute is None, any HDU
will always have a header. When an HDU is created with a constructor, e.g.
hdu = PrimaryHDU(data, header), the user may supply the header value from
an existing HDU’s header and the data value from a numpy array. If the
defaults (None) are used, the new HDU will have the minimal require
keyword:

>>> hdu = pyfits.PrimaryHDU()
>>> print hdu.header.ascardlist() # show the keywords
SIMPLE = T / conforms to FITS standard
BITPIX = 8 / array data type
NAXIS = 0 / number of array dimensions
EXTEND = T

A user can use any header and any data to construct a new HDU. PyFITS will
strip the required keywords from the input header first and then add back the
required keywords compatible to the new HDU. So, a user can use a table HDU’s
header to construct an image HDU and vice versa. The constructor will also
ensure the data type and dimension information in the header agree with the
data.

The Header Attribute

Value Access and Updating

As shown in the Quick Tutorial, keyword values can be accessed via keyword name
or index of an HDU’s header attribute. Here is a quick summary:

>>> hdulist = pyfits.open('input.fits') # open a FITS file
>>> prihdr = hdulist[0].header # the primary HDU header
>>> print prihdr[3] # get the 4th keyword's value
10
>>> prihdr[3] = 20 # change it's value
>>> print prihdr['darkcorr'] # get the value of the keyword 'darkcorr'
'OMIT'
>>> prihdr['darkcorr'] = 'PERFORM' # change darkcorr's value

When reference by the keyword name, it is case insensitive. Thus,
prihdr[‘abc’], prihdr[‘ABC’], or prihdr[‘aBc’] are all equivalent.

A keyword (and its corresponding Card) can be deleted using the same index/name
syntax:

>>> del prihdr[3] # delete the 2nd keyword
>>> del prihdr['abc'] # get the value of the keyword 'abc'

Note that, like a regular Python list, the indexing updates after each delete,
so if del prihdr[3] is done two times in a row, the 2nd and 3rd keywords
are removed from the original header.

Slices are not accepted by the header attribute, so it is not possible to do
del prihdr[3:5], for example.

The method update(key, value, comment) is a more versatile way to update
keywords. It has the flexibility to update an existing keyword and in case the
keyword does not exist, add it to the header. It also allows the use to update
both the value and its comment. If it is a new keyword, the user can also
specify where to put it, using the before or after optional argument. The
default is to append at the end of the header.

>>> prihdr.update('target', 'NGC1234', 'target name')
>>> # place the next new keyword before the 'target' keyword
>>> prihdr.update('newkey', 666, before='target') # comment is optional
>>> # place the next new keyword after the 21st keyword
>>> prihdr.update('newkey2', 42.0, 'another new key', after=20)

COMMENT, HISTORY, and Blank Keywords

Most keywords in a FITS header have unique names. If there are more than two
cards sharing the same name, it is the first one accessed when referred by
name. The duplicates can only be accessed by numeric indexing.

There are three special keywords (their associated cards are sometimes referred
to as commentary cards), which commonly appear in FITS headers more than once.
They are (1) blank keyword, (2) HISTORY, and (3) COMMENT. Again, to get their
values (except for the first one), a user must use indexing.

The following header methods are provided in PyFITS to add new commentary
cards: Header.add_history(), Header.add_comment(), and
Header.add_blank(). They are provided because the Header.update() method
will not work - it will replace the first card of the same keyword.

Users can control where in the header to add the new commentary card(s) by
using the optional before and after arguments, similar to the update()
method used for regular cards. If no before or after is specified, the new card
will be placed after the last one of the same kind (except blank-key cards
which will always be placed at the end). If no card of the same kind exists, it
will be placed at the end. Here is an example:

>>> hdu.header.add_history('history 1')
>>> hdu.header.add_blank('blank 1')
>>> hdu.header.add_comment('comment 1')
>>> hdu.header.add_history('history 2')
>>> hdu.header.add_blank('blank 2')
>>> hdu.header.add_comment('comment 2'))

and the part in the modified header becomes:

HISTORY history 1
HISTORY history 2
 blank 1
COMMENT comment 1
COMMENT comment 2
 blank 2

Ironically, there is no comment in a commentary card , only a string value.

Card Images

A FITS header consists of card images.

A card images in a FITS header consists of a keyword name, a value, and
optionally a comment. Physically, it takes 80 columns (bytes) - without
carriage return - in a FITS file’s storage form. In PyFITS, each card image is
manifested by a Card object. There are also special kinds of cards: commentary
cards (see above) and card images taking more than one 80-column card image.
The latter will be discussed later.

Most of the time, a new Card object is created with the Card constructor:
Card(key, value, comment). For example:

>>> c1 = pyfits.Card('temp', 80.0, 'temperature, floating value')
>>> c2 = pyfits.Card('detector', 1) # comment is optional
>>> c3 = pyfits.Card('mir_revr', True, 'mirror reversed? Boolean value)
>>> c4 = pyfits.Card('abc', 2+3j, 'complex value')
>>> c5 = pyfits.Card('observer', 'Hubble', 'string value')

>>> print c1; print c2; print c3; print c4; print c5 # show the card images
TEMP = 80.0 / temperature, floating value
DETECTOR= 1 /
MIR_REVR= T / mirror reversed? Boolean value
ABC = (2.0, 3.0) / complex value
OBSERVER= 'Hubble ' / string value

Cards have the attributes .key, .value, and .comment. Both
.value and .comment can be changed but not the .key attribute.

The Card() constructor will check if the arguments given are conforming to
the FITS standard and has a fixed card image format. If the user wants to
create a card with a customized format or even a card which is not conforming
to the FITS standard (e.g. for testing purposes), the Card.fromstring()
method can be used.

Cards can be verified with Card.verify(). The non-standard card c2 in the
example below, is flagged by such verification. More about verification in
PyFITS will be discussed in a later chapter.

>>> c1 = pyfits.Card().fromstring('ABC = 3.456D023')
>>> c2 = pyfits.Card().fromstring("P.I. ='Hubble'")
>>> print c1; print c2
ABC = 3.456D023
P.I. ='Hubble'
>>> c2.verify()
Output verification result:
Unfixable error: Illegal keyword name 'P.I.'

Card List

The Header itself only has limited functionality. Many lower level operations
can only be achieved by going through its CardList object.

The header is basically a list of Card objects. This list can be manifested
as a CardList object in PyFITS. It is accessed via the Header.ascardlist()
method (or the .ascard attribute, for short). Since the header attribute
only refers to a card value, so when a user needs to access a card’s other
properties (e.g. the comment) in a header, it has to go through the CardList.

Like the header’s item, the CardList‘s item can be accessed through either
the keyword name or index.

>>> cards = prihdr.header.ascardlist()
>>> cards['abc'].comment = 'new comment' # update the keyword ABC's comment
>>> cards[3].key # see the keyword name of the 4th card
>>> cards[10:20].keys() # see keyword names from cards 11 to 20

CONTINUE Cards

The fact that the FITS standard only allows up to 8 characters for the keyword
name and 80 characters to contain the keyword, the value, and the comment is
restrictive for certain applications. To allow long string values for keywords,
a proposal was made in:

http://legacy.gsfc.nasa.gov/docs/heasarc/ofwg/docs/ofwg_recomm/r13.html

by using the CONTINUE keyword after the regular 80-column containing the
keyword. PyFITS does support this convention, even though it is not a FITS
standard. The examples below show the use of CONTINUE is automatic for long
string values.

>>> c = pyfits.Card('abc', 'abcdefg'*20)
>>> print c
ABC = 'abcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcd&'
CONTINUE 'efgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefga&'
CONTINUE 'bcdefg&'
>>> c.value
'abcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgab
cdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefg'
both value and comments are long
>>> c = pyfits.Card('abc', 'abcdefg'*10, 'abcdefg'*10)
>>> print c
ABC = 'abcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcd&'
CONTINUE 'efg&'
CONTINUE '&' / abcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefga
CONTINUE '&' / bcdefg

Note that when CONTINUE card is used, at the end of each 80-characters card
image, an ampersand is present. The ampersand is not part of the string value.
Also, there is no “=” at the 9th column after CONTINUE. In the first example,
the entire 240 characters is considered a Card. So, if it is the nth card in a
header, the (n+1)th card refers to the next keyword, not the 80-characters
containing CONTINUE. These keywords having long string values can be accessed
and updated just like regular keywords.

HIERARCH Cards

For keywords longer than 8 characters, there is a convention originated at ESO
to facilitate such use. It uses a special keyword HIERARCH with the actual long
keyword following. PyFITS supports this convention as well.

When creating or updating using the Header.update() method, it is necessary
to prepend ‘hierarch’ (case insensitive). But if the keyword is already in the
header, it can be accessed or updated by assignment by using the keyword name
diretly, with or without the ‘hierarch’ prepending. The keyword name will
preserve its cases from its constructor, but when referring to the keyword, it
is case insensitive.

Examples follow:

>>> c = pyfits.Card('abcdefghi', 10)
...
ValueError: keyword name abcdefghi is too long (> 8), use HIERARCH.
>>> c = pyfits.Card('hierarch abcdefghi', 10)
>>> print c
HIERARCH abcdefghi = 10
>>> h = pyfits.PrimaryHDU()
>>> h.header.update('hierarch abcdefghi', 99)
>>> h.header.update('hierarch abcdefghi', 99)
>>> h.header['abcdefghi']
99
>>> h.header['abcdefghi'] = 10
>>> h.header['hierarch abcdefghi']
10
case insensitive
>>> h.header.update('hierarch ABCdefghi', 1000)
>>> print h.header
SIMPLE = T / conforms to FITS standard
BITPIX = 8 / array data type
NAXIS = 0 / number of array dimensions
EXTEND = T
HIERARCH ABCdefghi = 1000
>>> h.header['hierarch abcdefghi']
1000

 Copyright 2013, J. C. Hsu, Paul Barrett, Christopher Hanley, James Taylor, Michael Droettboom, Erik M. Bray.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyFITS 3.0.13.dev documentation

 	PyFITS Users Guide

Image Data

In this chapter, we’ll discuss the data component in an image HDU.

Image Data as an Array

A FITS primary HDU or an image extension HDU may contain image data. The
following discussions apply to both of these HDU classes. In PyFITS, for most
cases, it is just a simple numpy array, having the shape specified by the NAXIS
keywords and the data type specified by the BITPIX keyword - unless the data is
scaled, see next section. Here is a quick cross reference between allowed
BITPIX values in FITS images and the numpy data types:

BITPIX Numpy Data Type
8 numpy.uint8 (note it is UNsigned integer)
16 numpy.int16
32 numpy.int32
-32 numpy.float32
-64 numpy.float64

To recap the fact that in numpy the arrays are 0-indexed and the axes are
ordered from slow to fast. So, if a FITS image has NAXIS1=300 and NAXIS2=400,
the numpy array of its data will have the shape of (400, 300).

Here is a summary of reading and updating image data values:

>>> f = pyfits.open('image.fits') # open a FITS file
>>> scidata = f[1].data # assume the first extension is an image
>>> print scidata[1,4] # get the pixel value at x=5, y=2
>>> scidata[30:40, 10:20] # get values of the subsection
 # from x=11 to 20, y=31 to 40 (inclusive)
>>> scidata[1,4] = 999 # update a pixel value
>>> scidata[30:40, 10:20] = 0 # update values of a subsection
>>> scidata[3] = scidata[2] # copy the 3rd row to the 4th row

Here are some more complicated examples by using the concept of the “mask
array”. The first example is to change all negative pixel values in scidata to
zero. The second one is to take logarithm of the pixel values which are
positive:

>>> scidata[scidata<0] = 0
>>> scidata[scidata>0] = numpy.log(scidata[scidata>0])

These examples show the concise nature of numpy array operations.

Scaled Data

Sometimes an image is scaled, i.e. the data stored in the file is not the
image’s physical (true) values, but linearly transformed according to the
equation:

physical value = BSCALE*(storage value) + BZERO

BSCALE and BZERO are stored as keywords of the same names in the header of the
same HDU. The most common use of scaled image is to store unsigned 16-bit
integer data because FITS standard does not allow it. In this case, the stored
data is signed 16-bit integer (BITPIX=16) with BZERO=32768 (2**15), BSCALE=1.

Reading Scaled Image Data

Images are scaled only when either of the BSCALE/BZERO keywords are present in
the header and either of their values is not the default value (BSCALE=1,
BZERO=0).

For unscaled data, the data attribute of an HDU in PyFITS is a numpy array of
the same data type as specified by the BITPIX keyword. For scaled image, the
.data attribute will be the physical data, i.e. already transformed from the
storage data and may not be the same data type as prescribed in BITPIX. This
means an extra step of copying is needed and thus the corresponding memory
requirement. This also means that the advantage of memory mapping is reduced
for scaled data.

For floating point storage data, the scaled data will have the same data type.
For integer data type, the scaled data will always be single precision floating
point (numpy.float32). Here is an example of what happens to such a file,
before and after the data is touched

>>> f = pyfits.open('scaled_uint16.fits')
>>> hdu = f[1]
>>> print hdu.header['bitpix'], hdu.header['bzero']
16 32768
>>> print hdu.data # once data is touched, it is scaled
[11. 12. 13. 14. 15.]
>>> hdu.data.dtype.name
'float32'
>>> print hdu.header['bitpix'] # BITPIX is also updated
-32
BZERO and BSCALE are removed after the scaling
>>> print hdu.header['bzero']
KeyError: "Keyword 'bzero' not found."

Warning

An important caveat to be aware of when dealing with scaled data in PyFITS,
is that when accessing the data via the .data attribute, the data is
automatically scaled with the BZERO and BSCALE parameters. If the file was
opened in “update” mode, it will be saved with the rescaled data. This
surprising behavior is a compromise to err on the side of not losing data:
If some floating point calculations were made on the data, rescaling it
when saving could result in a loss of information.

To prevent this automatic scaling, open the file with the
do_not_scale_image_data=True argument to pyfits.open(). This is
especially useful for updating some header values, while ensuring that the
data is not modified.

One may also manually reapply scale parameters by using hdu.scale()
(see below).

Writing Scaled Image Data

With the extra processing and memory requirement, we discourage users to use
scaled data as much as possible. However, PyFITS does provide ways to write
scaled data with the scale(type, option, bscale, bzero) method. Here are a few
examples:

>>> # scale the data to Int16 with user specified bscale/bzero
>>> hdu.scale('int16', '', bzero=32768)
>>> # scale the data to Int32 with the min/max of the data range
>>> hdu.scale('int32', 'minmax')
>>> # scale the data, using the original BSCALE/BZERO
>>> hdu.scale('int32', 'old')

The first example above shows how to store an unsigned short integer array.

Great caution must be exercised when using the scale() method. The
.data attribute of an image HDU, after the scale() call, will become
the storage values, not the physical values. So, only call scale() just
before writing out to FITS files, i.e. calls of writeto(), flush(), or
close(). No further use of the data should be exercised. Here is an example
of what happens to the .data attribute after the scale() call:

>>> hdu = pyfits.PrimaryHDU(numpy.array([0., 1, 2, 3]))
>>> print hdu.data
[0. 1. 2. 3.]
>>> hdu.scale('int16', '', bzero=32768)
>>> print hdu.data # now the data has storage values
[-32768 -32767 -32766 -32765]
>>> hdu.writeto('new.fits')

Data Sections

When a FITS image HDU’s .data is accessed, either the whole data is copied into
memory (in cases of NOT using memory mapping or if the data is scaled) or a
virtual memory space equivalent to the data size is allocated (in the case of
memory mapping of non-scaled data). If there are several very large image HDU’s
being accessed at the same time, the system may run out of memory.

If a user does not need the entire image(s) at the same time, e.g. processing
images(s) ten rows at a time, the section attribute of an
HDU can be used to alleviate such memory problems.

With PyFITS’ improved support for memory-mapping, the sections feature is not
as necessary as it used to be for handling very large images. However, if the
image’s data is scaled with non-trivial BSCALE/BZERO values, accessing the data
in sections may still be necessary under the current implementation. Memmap is
also insufficient for loading images large than ~4 GB on a 32-bit system–in
such cases it may be necessary to use sections.

Here is an example of getting the median image from 3 input images of the size
5000x5000:

>>> f1 = pyfits.open('file1.fits')
>>> f2 = pyfits.open('file2.fits')
>>> f3 = pyfits.open('file3.fits')
>>> output = numpy.zeros(5000 * 5000)
>>> for i in range(50):
... j = i * 100
... k = j + 100
... x1 = f1[1].section[j:k,:]
... x2 = f2[1].section[j:k,:]
... x3 = f3[1].section[j:k,:]
... # use scipy.stsci.image's median function
... output[j:k] = image.median([x1, x2, x3])

Data in each .section does not need to be contiguous for memory savings to
be possible. PyFITS will do its best to join together discontiguous sections
of the array while reading as little as possible into memory.

Sections cannot be assigned to. Any modifications made to a data section are
not saved back to the original file.

 Copyright 2013, J. C. Hsu, Paul Barrett, Christopher Hanley, James Taylor, Michael Droettboom, Erik M. Bray.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyFITS 3.0.13.dev documentation

 	PyFITS Users Guide

Table Data

In this chapter, we’ll discuss the data component in a table HDU. A table will
always be in an extension HDU, never in a primary HDU.

There are two kinds of table in the FITS standard: binary tables and ASCII
tables. Binary tables are more economical in storage and faster in data access
and manipulation. ASCII tables store the data in a “human readable” form and
therefore takes up more storage space as well as more processing time since the
ASCII text need to be parsed back into numerical values.

Table Data as a Record Array

What is a Record Array?

A record array is an array which contains records (i.e. rows) of heterogeneous
data types. Record arrays are available through the records module in the numpy
library. Here is a simple example of record array:

>>> from numpy import rec
>>> bright = rec.array([(1,'Sirius', -1.45, 'A1V'),
... (2,'Canopus', -0.73, 'F0Ib'),
... (3,'Rigil Kent', -0.1, 'G2V')],
... formats='int16,a20,float32,a10',
... names='order,name,mag,Sp')

In this example, there are 3 records (rows) and 4 fields (columns). The first
field is a short integer, second a character string (of length 20), third a
floating point number, and fourth a character string (of length 10). Each
record has the same (heterogeneous) data structure.

Metadata of a Table

The data in a FITS table HDU is basically a record array, with added
attributes. The metadata, i.e. information about the table data, are stored in
the header. For example, the keyword TFORM1 contains the format of the first
field, TTYPE2 the name of the second field, etc. NAXIS2 gives the number of
records(rows) and TFIELDS gives the number of fields (columns). For FITS
tables, the maximum number of fields is 999. The data type specified in TFORM
is represented by letter codes for binary tables and a FORTRAN-like format
string for ASCII tables. Note that this is different from the format
specifications when constructing a record array.

Reading a FITS Table

Like images, the .data attribute of a table HDU contains the data of the table.
To recap, the simple example in the Quick Tutorial:

>>> f = pyfits.open('bright_stars.fits') # open a FITS file
>>> tbdata = f[1].data # assume the first extension is a table
>>> print tbdata[:2] # show the first two rows
[(1, 'Sirius', -1.4500000476837158, 'A1V'),
(2, 'Canopus', -0.73000001907348633, 'F0Ib')]

>>> print tbdata.field('mag') # show the values in field "mag"
[-1.45000005 -0.73000002 -0.1]
>>> print tbdata.field(1) # field can be referred by index too
['Sirius' 'Canopus' 'Rigil Kent']
>>> scidata[1,4] = 999 # update a pixel value
>>> scidata[30:40, 10:20] = 0 # update values of a subsection
>>> scidata[3] = scidata[2] # copy the 3rd row to the 4th row

Note that in PyFITS, when using the field() method, it is 0-indexed while
the suffixes in header keywords, such as TFORM is 1-indexed. So,
tbdata.field(0) is the data in the column with the name specified in TTYPE1
and format in TFORM1.

Warning: The FITS format allows table columns with a zero-width data
format, such as ‘0D’. This is probably intended as a space-saving measure on
files in which that column contains no data. In such files, the zero-width
columns are ommitted when accessing the table data, so the indexes of fields
might change when using the field() method. For this reason, if you expect
to encounter files containg zero-width columns it is recommended to access
fields by name rather than by index.

Table Operations

Selecting Records in a Table

Like image data, we can use the same “mask array” idea to pick out desired
records from a table and make a new table out of it.

In the next example, assuming the table’s second field having the name
‘magnitude’, an output table containing all the records of magnitude > 5 from
the input table is generated:

>>> import pyfits
>>> t = pyfits.open('table.fits')
>>> tbdata = t[1].data
>>> mask = tbdata.field('magnitude') > 5
>>> newtbdata = tbdata[mask]
>>> hdu = pyfits.BinTableHDU(newtbdata)
>>> hdu.writeto('newtable.fits')

Merging Tables

Merging different tables is straightforward in PyFITS. Simply merge the column
definitions of the input tables:

>>> t1 = pyfits.open('table1.fits')
>>> t2 = pyfits.open('table2.fits')
the column attribute is the column definitions
>>> t = t1[1].columns + t2[1].columns
>>> hdu = pyfits.new_table(t)
>>> hdu.writeto('newtable.fits')

The number of fields in the output table will be the sum of numbers of fields
of the input tables. Users have to make sure the input tables don’t share any
common field names. The number of records in the output table will be the
largest number of records of all input tables. The expanded slots for the
originally shorter table(s) will be zero (or blank) filled.

Appending Tables

Appending one table after another is slightly trickier, since the two tables
may have different field attributes. Here are two examples. The first is to
append by field indices, the second one is to append by field names. In both
cases, the output table will inherit column attributes (name, format, etc.) of
the first table.

>>> t1 = pyfits.open('table1.fits')
>>> t2 = pyfits.open('table2.fits')
one way to find the number of records
>>> nrows1 = t1[1].data.shape[0]
another way to find the number of records
>>> nrows2 = t2[1].header['naxis2']
total number of rows in the table to be generated
>>> nrows = nrows1 + nrows2
>>> hdu = pyfits.new_table(t1[1].columns, nrows=nrows)
first case, append by the order of fields
>>> for i in range(len(t1[1].columns)):
... hdu.data.field(i)[nrows1:]=t2[1].data.field(i)
or, second case, append by the field names
>>> for name in t1[1].columns.names:
... hdu.data.field(name)[nrows1:]=t2[1].data.field(name)
write the new table to a FITS file
>>> hdu.writeto('newtable.fits')

Scaled Data in Tables

A table field’s data, like an image, can also be scaled. Scaling in a table has
a more generalized meaning than in images. In images, the physical data is a
simple linear transformation from the storage data. The table fields do have
such construct too, where BSCALE and BZERO are stored in the header as TSCALn
and TZEROn. In addition, Boolean columns and ASCII tables’ numeric fields are
also generalized “scaled” fields, but without TSCAL and TZERO.

All scaled fields, like the image case, will take extra memory space as well as
processing. So, if high performance is desired, try to minimize the use of
scaled fields.

All the scalings are done for the user, so the user only sees the physical
data. Thus, this no need to worry about scaling back and forth between the
physical and storage column values.

Creating a FITS Table

Column Creation

To create a table from scratch, it is necessary to create individual columns
first. A Column constructor needs the minimal information of column name and
format. Here is a summary of all allowed formats for a binary table:

FITS format code Description 8-bit bytes

L logical (Boolean) 1
X bit *
B Unsigned byte 1
I 16-bit integer 2
J 32-bit integer 4
K 64-bit integer 4
A character 1
E single precision floating point 4
D double precision floating point 8
C single precision complex 8
M double precision complex 16
P array descriptor 8

We’ll concentrate on binary tables in this chapter. ASCII tables will be
discussed in a later chapter. The less frequently used X format (bit array) and
P format (used in variable length tables) will also be discussed in a later
chapter.

Besides the required name and format arguments in constructing a Column,
there are many optional arguments which can be used in creating a column. Here
is a list of these arguments and their corresponding header keywords and
descriptions:

Argument Corresponding Description
in Column() header keyword

name TTYPE column name
format TFORM column format
unit TUNIT unit
null TNULL null value (only for B, I, and J)
bscale TSCAL scaling factor for data
bzero TZERO zero point for data scaling
disp TDISP display format
dim TDIM multi-dimensional array spec
start TBCOL starting position for ASCII table
array the data of the column

Here are a few Columns using various combination of these arguments:

>>> import numpy as np
>>> from pyfits import Column
>>> counts = np.array([312, 334, 308, 317])
>>> names = np.array(['NGC1', 'NGC2', 'NGC3', 'NGC4'])
>>> c1 = Column(name='target', format='10A', array=names)
>>> c2 = Column(name='counts', format='J', unit='DN', array=counts)
>>> c3 = Column(name='notes', format='A10')
>>> c4 = Column(name='spectrum', format='1000E')
>>> c5 = Column(name='flag', format='L', array=[1, 0, 1, 1])

In this example, formats are specified with the FITS letter codes. When there
is a number (>1) preceding a (numeric type) letter code, it means each cell in
that field is a one-dimensional array. In the case of column c4, each cell is
an array (a numpy array) of 1000 elements.

For character string fields, the number can be either before or after the
letter ‘A’ and they will mean the same string size. So, for columns c1 and c3,
they both have 10 characters in each of their cells. For numeric data type, the
dimension number must be before the letter code, not after.

After the columns are constructed, the new_table() function can be used to
construct a table HDU. We can either go through the column definition object:

>>> coldefs = pyfits.ColDefs([c1, c2, c3, c4, c5])
>>> tbhdu = pyfits.new_table(coldefs)

or directly use the new_table() function:

>>> tbhdu = pyfits.new_table([c1, c2, c3, c4, c5])

A look of the newly created HDU’s header will show that relevant keywords are
properly populated:

>>> print tbhdu.header.ascardlist()
XTENSION = 'BINTABLE' / binary table extension
BITPIX = 8 / array data type
NAXIS = 2 / number of array dimensions
NAXIS1 = 4025 / length of dimension 1
NAXIS2 = 4 / length of dimension 2
PCOUNT = 0 / number of group parameters
GCOUNT = 1 / number of groups
TFIELDS = 5 / number of table fields
TTYPE1 = 'target '
TFORM1 = '10A '
TTYPE2 = 'counts '
TFORM2 = 'J '
TUNIT2 = 'DN '
TTYPE3 = 'notes '
TFORM3 = '10A '
TTYPE4 = 'spectrum'
TFORM4 = '1000E '
TTYPE5 = 'flag '
TFORM5 = 'L '

Warning: It should be noted that when creating a new table with
new_table(), an in-memory copy of all of the input column arrays is
created. This is because it is not guaranteed that the columns are arranged
contiguously in memory in row-major order (in fact, they are most likely not),
so they have to be combined into a new array.

However, if the array data is already contiguous in memory, such as in an
existing record array, a kludge can be used to create a new table HDU without
any copying. First, create the Columns as before, but without using the
array= argument:

>>> c1 = Column(name='target', format='10A')
...

Then call new_table():

>>> tbhdu = pyfits.new_table([c1, c2, c3, c4, c5])

This will create a new table HDU as before, with the correct column
definitions, but an empty data section. Now simply assign your array directly
to the HDU’s data attribute:

>>> tbhdu.data = mydata

In a future version of PyFITS table creation will be simplified and this
process won’t be necessary.

 Copyright 2013, J. C. Hsu, Paul Barrett, Christopher Hanley, James Taylor, Michael Droettboom, Erik M. Bray.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyFITS 3.0.13.dev documentation

 	PyFITS Users Guide

Verification

PyFITS has built in a flexible scheme to verify FITS data being conforming to
the FITS standard. The basic verification philosophy in PyFITS is to be
tolerant in input and strict in output.

When PyFITS reads a FITS file which is not conforming to FITS standard, it will
not raise an error and exit. It will try to make the best educated
interpretation and only gives up when the offending data is accessed and no
unambiguous interpretation can be reached.

On the other hand, when writing to an output FITS file, the content to be
written must be strictly compliant to the FITS standard by default. This
default behavior can be overwritten by several other options, so the user will
not be held up because of a minor standard violation.

FITS Standard

Since FITS standard is a “loose” standard, there are many places the violation
can occur and to enforce them all will be almost impossible. It is not uncommon
for major observatories to generate data products which are not 100% FITS
compliant. Some observatories have also developed their own sub-standard
(dialect?) and some of these become so prevalent that they become de facto
standards. Examples include the long string value and the use of the CONTINUE
card.

The violation of the standard can happen at different levels of the data
structure. PyFITS’s verification scheme is developed on these hierarchical
levels. Here are the 3 PyFITS verification levels:

	The HDU List

	Each HDU

	Each Card in the HDU Header

These three levels correspond to the three categories of PyFITS objects:
HDUList, any HDU (e.g. PrimaryHDU, ImageHDU, etc.), and Card. They are
the only objects having the verify() method. All other objects (e.g.
CardList) do not have any verify() method.

If verify() is called at the HDU List level, it verifies standard
compliance at all three levels, but a call of verify() at the Card level
will only check the compliance of that Card. Since PyFITS is tolerant when
reading a FITS file, no verify() is called on input. On output,
verify() is called with the most restrictive option as the default.

Verification Options

There are 5 options for all verify(option) calls in PyFITS. In addition, they
available for the output_verify argument of the following methods:
close(), writeto(), and flush(). In these cases, they are passed to
a verify() call within these methods. The 5 options are:

exception

This option will raise an exception, if any FITS standard is violated. This is
the default option for output (i.e. when writeto(), close(), or
flush() is called. If a user wants to overwrite this default on output, the
other options listed below can be used.

ignore

This option will ignore any FITS standard violation. On output, it will write
the HDU List content to the output FITS file, whether or not it is conforming
to the FITS standard.

The ignore option is useful in the following situations:

	An input FITS file with non-standard formatting is read and the user wants
to copy or write out to an output file. The non-standard formatting will be
preserved in the output file.

	A user wants to create a non-standard FITS file on purpose, possibly for
testing or consistency.

No warning message will be printed out. This is like a silent warning option
(see below).

fix

This option will try to fix any FITS standard violations. It is not always
possible to fix such violations. In general, there are two kinds of FITS
standard violations: fixable and non-fixable. For example, if a keyword has a
floating number with an exponential notation in lower case ‘e’ (e.g. 1.23e11)
instead of the upper case ‘E’ as required by the FITS standard, it is a fixable
violation. On the other hand, a keyword name like ‘P.I.’ is not fixable, since
it will not know what to use to replace the disallowed periods. If a violation
is fixable, this option will print out a message noting it is fixed. If it is
not fixable, it will throw an exception.

The principle behind fixing is to do no harm. For example, it is plausible to
‘fix’ a Card with a keyword name like ‘P.I.’ by deleting it, but PyFITS will
not take such action to hurt the integrity of the data.

Not all fixes may be the “correct” fix, but at least PyFITS will try to make
the fix in such a way that it will not throw off other FITS readers.

silentfix

Same as fix, but will not print out informative messages. This may be useful in
a large script where the user does not want excessive harmless messages. If the
violation is not fixable, it will still throw an exception.

warn

This option is the same as the ignore option but will send warning messages. It
will not try to fix any FITS standard violations whether fixable or not.

Verifications at Different Data Object Levels

We’ll examine what PyFITS’s verification does at the three different levels:

Verification at HDUList

At the HDU List level, the verification is only for two simple cases:

	Verify that the first HDU in the HDU list is a Primary HDU. This is a
fixable case. The fix is to insert a minimal Primary HDU into the HDU list.

	Verify second or later HDU in the HDU list is not a Primary HDU. Violation
will not be fixable.

Verification at Each HDU

For each HDU, the mandatory keywords, their locations in the header, and their
values will be verified. Each FITS HDU has a fixed set of required keywords in
a fixed order. For example, the Primary HDU’s header must at least have the
following keywords:

SIMPLE = T /
BITPIX = 8 /
NAXIS = 0

If any of the mandatory keywords are missing or in the wrong order, the fix
option will fix them:

>>> print hdu.header # has a 'bad' header
SIMPLE = T /
NAXIS = 0
BITPIX = 8 /
>>> hdu.verify('fix') # fix it
Output verification result:
'BITPIX' card at the wrong place (card 2). Fixed by moving it to the right
place (card 1).
>>> print h.header # voila!
SIMPLE = T / conforms to FITS standard
BITPIX = 8 / array data type
NAXIS = 0

Verification at Each Card

The lowest level, the Card, also has the most complicated verification
possibilities. Here is a lit of fixable and not fixable Cards:

Fixable Cards:

	floating point numbers with lower case ‘e’ or ‘d’

	the equal sign is before column 9 in the card image

	string value without enclosing quotes

	missing equal sign before column 9 in the card image

	space between numbers and E or D in floating point values

	unparseable values will be “fixed” as a string

Here are some examples of fixable cards:

>>> print hdu.header.ascardlist()[4:] # has a bunch of fixable cards
FIX1 = 2.1e23
FIX2= 2
FIX3 = string value without quotes
FIX4 2
FIX5 = 2.4 e 03
FIX6 = '2 10 '
can still access the values before the fix
>>> hdu.header[5]
2
>>> hdu.header['fix4']
2
>>> hdu.header['fix5']
2400.0
>>> hdu.verify('silentfix')
>>> print hdu.header.ascard[4:]
FIX1 = 2.1E23
FIX2 = 2
FIX3 = 'string value without quotes'
FIX4 = 2
FIX5 = 2.4E03
FIX6 = '2 10 '

Unfixable Cards:

	illegal characters in keyword name

We’ll summarize the verification with a “life-cycle” example:

>>> h = pyfits.PrimaryHDU() # create a PrimaryHDU
Try to add an non-standard FITS keyword 'P.I.' (FITS does no allow '.'
in the keyword), if using the update() method - doesn't work!
>>> h.update('P.I.', 'Hubble')
ValueError: Illegal keyword name 'P.I.'
Have to do it the hard way (so a user will not do this by accident)
First, create a card image and give verbatim card content (including
the proper spacing, but no need to add the trailing blanks)
>>> c = pyfits.Card().fromstring("P.I. = 'Hubble'")
then append it to the header (must go through the CardList)
>>> h.header.ascardlist().append(c)
Now if we try to write to a FITS file, the default output verification
will not take it.
>>> h.writeto('pi.fits')
Output verification result:
HDU 0:
 Card 4:
 Unfixable error: Illegal keyword name 'P.I.'
......
 raise VerifyError
VerifyError
Must set the output_verify argument to 'ignore', to force writing a
non-standard FITS file
>>> h.writeto('pi.fits', output_verify='ignore')
Now reading a non-standard FITS file
pyfits is magnanimous in reading non-standard FITS file
>>> hdus = pyfits.open('pi.fits')
>>> print hdus[0].header.ascardlist()
SIMPLE = T / conforms to FITS standard
BITPIX = 8 / array data type
NAXIS = 0 / number of array dimensions
EXTEND = T
P.I. = 'Hubble'
even when you try to access the offending keyword, it does NOT complain
>>> hdus[0].header['p.i.']
'Hubble'
But if you want to make sure if there is anything wrong/non-standard,
use the verify() method
>>> hdus.verify()
Output verification result:
HDU 0:
 Card 4:
 Unfixable error: Illegal keyword name 'P.I.'

Verification using the FITS Checksum Keyword Convention

The North American FITS committee has reviewed the FITS Checksum Keyword
Convention for possible adoption as a FITS Standard. This convention provides
an integrity check on information contained in FITS HDUs. The convention
consists of two header keyword cards: CHECKSUM and DATASUM. The CHECKSUM
keyword is defined as an ASCII character string whose value forces the 32-bit
1’s complement checksum accumulated over all the 2880-byte FITS logical records
in the HDU to equal negative zero. The DATASUM keyword is defined as a
character string containing the unsigned integer value of the 32-bit 1’s
complement checksum of the data records in the HDU. Verifying the the
accumulated checksum is still equal to negative zero provides a fairly reliable
way to determine that the HDU has not been modified by subsequent data
processing operations or corrupted while copying or storing the file on
physical media.

In order to avoid any impact on performance, by default PyFITS will not verify
HDU checksums when a file is opened or generate checksum values when a file is
written. In fact, CHECKSUM and DATASUM cards are automatically removed from
HDU headers when a file is opened, and any CHECKSUM or DATASUM cards are
stripped from headers when a HDU is written to a file. In order to verify the
checksum values for HDUs when opening a file, the user must supply the checksum
keyword argument in the call to the open convenience function with a value of
True. When this is done, any checksum verification failure will cause a
warning to be issued (via the warnings module). If checksum verification is
requested in the open, and no CHECKSUM or DATASUM cards exist in the HDU
header, the file will open without comment. Similarly, in order to output the
CHECKSUM and DATASUM cards in an HDU header when writing to a file, the user
must supply the checksum keyword argument with a value of True in the call to
the writeto function. It is possible to write only the DATASUM card to the
header by supplying the checksum keyword argument with a value of ‘datasum’.

Here are some examples:

>>>
Open the file pix.fits verifying the checksum values for all HDUs
>>> hdul = pyfits.open('pix.fits', checksum=True)
>>>
Open the file in.fits where checksum verification fails for the
primary HDU
>>> hdul = pyfits.open('in.fits', checksum=True)
Warning: Checksum verification failed for HDU #0.
>>>
Create file out.fits containing an HDU constructed from data and header
containing both CHECKSUM and DATASUM cards.
>>> pyfits.writeto('out.fits', data, header, checksum=True)
>>>
Create file out.fits containing all the HDUs in the HDULIST
hdul with each HDU header containing only the DATASUM card
>>> hdul.writeto('out.fits', checksum='datasum')
>>>
Create file out.fits containing the HDU hdu with both CHECKSUM
and DATASUM cards in the header
>>> hdu.writeto('out.fits', checksum=True)
>>>
Append a new HDU constructed from array data to the end of
the file existingfile.fits with only the appended HDU
containing both CHECKSUM and DATASUM cards.
>>> pyfits.append('existingfile.fits', data, checksum=True)

 Copyright 2013, J. C. Hsu, Paul Barrett, Christopher Hanley, James Taylor, Michael Droettboom, Erik M. Bray.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyFITS 3.0.13.dev documentation

 	PyFITS Users Guide

Less Familiar Objects

In this chapter, we’ll discuss less frequently used FITS data structures. They
include ASCII tables, variable length tables, and random access group FITS
files.

ASCII Tables

FITS standard supports both binary and ASCII tables. In ASCII tables, all the
data are stored in a human readable text form, so it takes up more space and
extra processing to parse the text for numeric data.

In PyFITS, the interface for ASCII tables and binary tables is basically the
same, i.e. the data is in the .data attribute and the field() method
is used to refer to the columns and returns a numpy array. When reading the
table, PyFITS will automatically detect what kind of table it is.

>>> hdus = pyfits.open('ascii_table.fits')
>>> hdus[1].data[:1]
FITS_rec(
... [(10.123000144958496, 37)],
... dtype=[('a', '>f4'),('b','>i4')])
>>> hdus[1].data.field('a')
array([10.12300014, 5.19999981, 15.60999966, 0. ,
345.], dtype=float32)
>>> hdus[1].data.formats
['E10.4', 'I5']

Note that the formats in the record array refer to the raw data which are ASCII
strings (therefore ‘a11’ and ‘a5’), but the .formats attribute of data retains
the original format specifications (‘E10.4’ and ‘I5’).

Creating an ASCII Table

Creating an ASCII table from scratch is similar to creating a binary table. The
difference is in the Column definitions. The columns/fields in an ASCII table
are more limited than in a binary table. It does not allow more than one
numerical value in a cell. Also, it only supports a subset of what allowed in a
binary table, namely character strings, integer, and (single and double
precision) floating point numbers. Boolean and complex numbers are not allowed.

The format syntax (the values of the TFORM keywords) is different from that of a
binary table, they are:

Aw Character string
Iw (Decimal) Integer
Fw.d Single precision real
Ew.d Single precision real, in exponential notation
Dw.d Double precision real, in exponential notation

where, w is the width, and d the number of digits after the decimal point. The
syntax difference between ASCII and binary tables can be confusing. For example,
a field of 3-character string is specified ‘3A’ in a binary table and as ‘A3’ in
an ASCII table.

The other difference is the need to specify the table type when using either
ColDef() or new_table().

The default value for tbtype is BinTableHDU.

>>>
Define the columns
>>> import numpy as np
>>> import pyfits
>>> a1 = np.array(['abcd', 'def'])
>>> r1 = np.array([11., 12.])
>>> c1 = pyfits.Column(name='abc', format='A3', array=a1)
>>> c2 = pyfits.Column(name='def', format='E', array=r1, bscale=2.3,
... bzero=0.6)
>>> c3 = pyfits.Column(name='t1', format='I', array=[91, 92, 93])
Create the table
>>> x = pyfits.ColDefs([c1, c2, c3], tbtype='TableHDU')
>>> hdu = pyfits.new_table(x, tbtype='TableHDU')
Or, simply,
>>> hdu = pyfits.new_table([c1, c2, c3], tbtype='TableHDU')
>>> hdu.writeto('ascii.fits')
>>> hdu.data
FITS_rec([('abcd', 11.0, 91), ('def', 12.0, 92), ('', 0.0, 93)],
 dtype=[('abc', '|S3'), ('def', '|S14'), ('t1', '|S10')])

Variable Length Array Tables

The FITS standard also supports variable length array tables. The basic idea is
that sometimes it is desirable to have tables with cells in the same field
(column) that have the same data type but have different lengths/dimensions.
Compared with the standard table data structure, the variable length table can
save storage space if there is a large dynamic range of data lengths in
different cells.

A variable length array table can have one or more fields (columns) which are
variable length. The rest of the fields (columns) in the same table can still be
regular, fixed-length ones. PyFITS will automatically detect what kind of field
it is during reading; no special action is needed from the user. The data type
specification (i.e. the value of the TFORM keyword) uses an extra letter ‘P’ and
the format is

rPt(max)

where r is 0, 1, or absent, t is one of the letter code for regular table data
type (L, B, X, I, J, etc. currently, the X format is not supported for variable
length array field in PyFITS), and max is the maximum number of elements. So,
for a variable length field of int32, The corresponding format spec is,
e.g. ‘PJ(100)’.

>>> f = pyfits.open('variable_length_table.fits')
>>> print f[1].header['tform5']
1PI(20)
>>> print f[1].data.field(4)[:3]
[array([1], dtype=int16) array([88, 2], dtype=int16)
array([1, 88, 3], dtype=int16)]

The above example shows a variable length array field of data type int16 and its
first row has one element, second row has 2 elements etc. Accessing variable
length fields is almost identical to regular fields, except that operations on
the whole filed are usually not possible. A user has to process the field row by
row.

Creating a Variable Length Array Table

Creating a variable length table is almost identical to creating a regular
table. The only difference is in the creation of field definitions which are
variable length arrays. First, the data type specification will need the ‘P’
letter, and secondly, the field data must be an objects array (as included in
the numpy module). Here is an example of creating a table with two fields, one
is regular and the other variable length array.

>>> import pyfits
>>> import numpy as np
>>> c1 = pyfits.Column(name='var', format='PJ()',
... array=np.array([[45., 56]
 [11, 12, 13]],
... dtype=np.object))
>>> c2 = pyfits.Column(name='xyz', format='2I', array=[[11, 3], [12, 4]])
the rest is the same as a regular table.
Create the table HDU
>>> tbhdu = pyfits.new_table([c1, c2])
>>> print tbhdu.data
FITS_rec([(array([45, 56]), array([11, 3], dtype=int16)),
 (array([11, 12, 13]), array([12, 4], dtype=int16))],
 dtype=[('var', '<i4', 2), ('xyz', '<i2', 2)])
write to a FITS file
>>> tbhdu.writeto('var_table.fits')
>>> hdu = pyfits.open('var_table.fits')
Note that heap info is taken care of (PCOUNT) when written to FITS file.
>>> print hdu[1].header.ascardlist()
XTENSION= 'BINTABLE' / binary table extension
BITPIX = 8 / array data type
NAXIS = 2 / number of array dimensions
NAXIS1 = 12 / length of dimension 1
NAXIS2 = 2 / length of dimension 2
PCOUNT = 20 / number of group parameters
GCOUNT = 1 / number of groups
TFIELDS = 2 / number of table fields
TTYPE1 = 'var '
TFORM1 = 'PJ(3) '
TTYPE2 = 'xyz '
TFORM2 = '2I '

Random Access Groups

Another less familiar data structure supported by the FITS standard is the
random access group. This convention was established before the binary table
extension was introduced. In most cases its use can now be superseded by the
binary table. It is mostly used in radio interferometry.

Like Primary HDUs, a Random Access Group HDU is always the first HDU of a FITS
file. Its data has one or more groups. Each group may have any number
(including 0) of parameters, together with an image. The parameters and the
image have the same data type.

All groups in the same HDU have the same data structure, i.e. same data type
(specified by the keyword BITPIX, as in image HDU), same number of parameters
(specified by PCOUNT), and the same size and shape (specified by NAXISn
keywords) of the image data. The number of groups is specified by GCOUNT and
the keyword NAXIS1 is always 0. Thus the total data size for a Random Access
Group HDU is

|BITPIX| * GCOUNT * (PCOUNT + NAXIS2 * NAXIS3 * ... * NAXISn)

Header and Summary

Accessing the header of a Random Access Group HDU is no different from any
other HDU. Just use the .header attribute.

The content of the HDU can similarly be summarized by using the
HDUList.info() method:

>>> f = pyfits.open('random_group.fits')
>>> print f[0].header['groups']
True
>>> print f[0].header['gcount']
7956
>>> print f[0].header['pcount']
6
>>> f.info()
Filename: random_group.fits
No. Name Type Cards Dimensions Format
0 AN GroupsHDU 158 (3, 4, 1, 1, 1) Float32 7956 Groups
6 Parameters

Data: Group Parameters

The data part of a random access group HDU is, like other HDUs, in the
.data attribute. It includes both parameter(s) and image array(s).

	show the data in 100th group, including parameters and data

>>> print f[0].data[99]
(-8.1987486677035799e-06, 1.2010923615889215e-05,
-1.011189139244005e-05, 258.0, 2445728., 0.10, array([[[[[12.4308672 ,
0.56860745, 3.99993873],
[12.74043655, 0.31398511, 3.99993873],
[0. , 0. , 3.99993873],
[0. , 0. , 3.99993873]]]]], dtype=float32))

The data first lists all the parameters, then the image array, for the
specified group(s). As a reminder, the image data in this file has the shape of
(1,1,1,4,3) in Python or C convention, or (3,4,1,1,1) in IRAF or FORTRAN
convention.

To access the parameters, first find out what the parameter names are, with the
.parnames attribute:

>>> f[0].data.parnames # get the parameter names
['uu--', 'vv--', 'ww--', 'baseline', 'date', 'date']

The group parameter can be accessed by the .par() method. Like the table
field() method, the argument can be either index or name:

>>> print f[0].data.par(0)[99] # Access group parameter by name or by index
-8.1987486677035799e-06
>>> print f[0].data.par('uu--')[99]
-8.1987486677035799e-06

Note that the parameter name ‘date’ appears twice. This is a feature in the
random access group, and it means to add the values together. Thus:

>>>
Duplicate group parameter name 'date' for 5th and 6th parameters
>>> print f[0].data.par(4)[99]
2445728.0
>>> print f[0].data.par(5)[99]
0.10
When accessed by name, it adds the values together if the name is shared
by more than one parameter
>>> print f[0].data.par('date')[99]
2445728.10

The .par() is a method for either the entire data object or one data item
(a group). So there are two possible ways to get a group parameter for a
certain group, this is similar to the situation in table data (with its
field() method):

>>>
Access group parameter by selecting the row (group) number last
>>> print f[0].data.par(0)[99]
-8.1987486677035799e-06
Access group parameter by selecting the row (group) number first
>>> print f[0].data[99].par(0)
-8.1987486677035799e-06

On the other hand, to modify a group parameter, we can either assign the new
value directly (if accessing the row/group number last) or use the setpar()
method (if accessing the row/group number first). The method setpar() is
also needed for updating by name if the parameter is shared by more than one
parameters:

>>>
Update group parameter when selecting the row (group) number last
>>> f[0].data.par(0)[99] = 99.
>>>
Update group parameter when selecting the row (group) number first
>>> f[0].data[99].setpar(0, 99.) # or setpar('uu--', 99.)
>>>
Update group parameter by name when the name is shared by more than
one parameters, the new value must be a tuple of constants or sequences
>>> f[0].data[99].setpar('date', (2445729., 0.3))
>>> f[0].data[:3].setpar('date', (2445729., [0.11, 0.22, 0.33]))
>>> f[0].data[:3].par('date')
array([2445729.11 , 2445729.22 , 2445729.33000001])

Data: Image Data

The image array of the data portion is accessible by the .data attribute of
the data object. A numpy array is returned:

>>> print f[0].data.data[99]
array([[[[[12.4308672 , 0.56860745, 3.99993873],
[12.74043655, 0.31398511, 3.99993873],
[0. , 0. , 3.99993873],
[0. , 0. , 3.99993873]]]]], type=float32)

Creating a Random Access Group HDU

To create a random access group HDU from scratch, use GroupData() to
encapsulate the data into the group data structure, and use GroupsHDU() to
create the HDU itself:

>>>
Create the image arrays. The first dimension is the number of groups.
>>> imdata = numpy.arange(100.0, shape=(10, 1, 1, 2, 5))
Next, create the group parameter data, we'll have two parameters.
Note that the size of each parameter's data is also the number of groups.
A parameter's data can also be a numeric constant.
>>> pdata1 = numpy.arange(10) + 0.1
>>> pdata2 = 42
Create the group data object, put parameter names and parameter data
in lists assigned to their corresponding arguments.
If the data type (bitpix) is not specified, the data type of the image
will be used.
>>> x = pyfits.GroupData(imdata, parnames=['abc', 'xyz'],
... pardata=[pdata1, pdata2], bitpix=-32)
Now, create the GroupsHDU and write to a FITS file.
>>> hdu = pyfits.GroupsHDU(x)
>>> hdu.writeto('test_group.fits')
>>> print hdu.header.ascardlist()[:]
SIMPLE = T / conforms to FITS standard
BITPIX = -32 / array data type
NAXIS = 5 / number of array dimensions
NAXIS1 = 0
NAXIS2 = 5
NAXIS3 = 2
NAXIS4 = 1
NAXIS5 = 1
EXTEND = T
GROUPS = T / has groups
PCOUNT = 2 / number of parameters
GCOUNT = 10 / number of groups
PTYPE1 = 'abc '
PTYPE2 = 'xyz '
>>> print hdu.data[:2]
FITS_rec[
(0.10000000149011612, 42.0, array([[[[0., 1., 2., 3., 4.],
[5., 6., 7., 8., 9.]]]], dtype=float32)),
(1.1000000238418579, 42.0, array([[[[10., 11., 12., 13., 14.],
[15., 16., 17., 18., 19.]]]], dtype=float32))
]

Compressed Image Data

A general technique has been developed for storing compressed image data in
FITS binary tables. The principle used in this convention is to first divide
the n-dimensional image into a rectangular grid of sub images or ‘tiles’.
Each tile is then compressed as a continuous block of data, and the resulting
compressed byte stream is stored in a row of a variable length column in a
FITS binary table. Several commonly used algorithms for compressing image
tiles are supported. These include, Gzip, Rice, IRAF Pixel List (PLIO), and
Hcompress.

For more details, reference “A FITS Image Compression Proposal” from:

http://www.adass.org/adass/proceedings/adass99/P2-42/

and “Registered FITS Convention, Tiled Image Compression Convention”:

http://fits.gsfc.nasa.gov/registry/tilecompression.html

Compressed image data is accessed, in PyFITS, using the optional
“pyfits.compression” module contained in a C shared library (compression.so).
If an attempt is made to access an HDU containing compressed image data when
the pyfitsComp module is not available, the user is notified of the problem
and the HDU is treated like a standard binary table HDU. This notification
will only be made the first time compressed image data is encountered. In this
way, the pyfitsComp module is not required in order for PyFITS to work.

Header and Summary

In PyFITS, the header of a compressed image HDU appears to the user like any
image header. The actual header stored in the FITS file is that of a binary
table HDU with a set of special keywords, defined by the convention, to
describe the structure of the compressed image. The conversion between binary
table HDU header and image HDU header is all performed behind the scenes.
Since the HDU is actually a binary table, it may not appear as a primary HDU in
a FITS file.

The content of the HDU header may be accessed using the .header attribute:

>>> f = pyfits.open('compressed_image.fits')
>>> print f[1].header
XTENSION= 'IMAGE ' / extension type
BITPIX = 16 / array data type
NAXIS = 2 / number of array dimensions
NAXIS1 = 512 / length of data axis
NAXIS2 = 512 / length of data axis
PCOUNT = 0 / number of parameters
GCOUNT = 1 / one data group (required keyword)
EXTNAME = 'COMPRESSED' / name of this binary table extension

The contents of the corresponding binary table HDU may be accessed using the
hidden ._header attribute. However, all user interface with the HDU header
should be accomplished through the image header (the .header attribute).

>>> f = pyfits.open('compressed_image.fits')
>>> print f[1]._header
XTENSION= 'BINTABLE' / binary table extension
BITPIX = 8 / 8-bit bytes
NAXIS = 2 / 2-dimensional binary table
NAXIS1 = 8 / width of table in bytes
NAXIS2 = 512 / number of rows in table
PCOUNT = 157260 / size of special data area
GCOUNT = 1 / one data group (required keyword)
TFIELDS = 1 / number of fields in each row
TTYPE1 = 'COMPRESSED_DATA' / label for field 1
TFORM1 = '1PB(384)' / data format of field: variable length array
ZIMAGE = T / extension contains compressed image
ZBITPIX = 16 / data type of original image
ZNAXIS = 2 / dimension of original image
ZNAXIS1 = 512 / length of original image axis
ZNAXIS2 = 512 / length of original image axis
ZTILE1 = 512 / size of tiles to be compressed
ZTILE2 = 1 / size of tiles to be compressed
ZCMPTYPE= 'RICE_1 ' / compression algorithm
ZNAME1 = 'BLOCKSIZE' / compression block size
ZVAL1 = 32 / pixels per block
EXTNAME = 'COMPRESSED' / name of this binary table extension

The contents of the HDU can be summarized by using either the info()
convenience function or method:

>>> pyfits.info('compressed_image.fits')
Filename: compressed_image.fits
No. Name Type Cards Dimensions Format
0 PRIMARY PrimaryHDU 6 () int16
1 COMPRESSED CompImageHDU 52 (512, 512) int16
>>>
>>> f = pyfits.open('compressed_image.fits')
>>> f.info()
Filename: compressed_image.fits
No. Name Type Cards Dimensions Format
0 PRIMARY PrimaryHDU 6 () int16
1 COMPRESSED CompImageHDU 52 (512, 512) int16
>>>

Data

As with the header, the data of a compressed image HDU appears to the user as
standard uncompressed image data. The actual data is stored in the fits file
as Binary Table data containing at least one column (COMPRESSED_DATA). Each
row of this variable-length column contains the byte stream that was generated
as a result of compressing the corresponding image tile. Several optional
columns may also appear. These include, UNCOMPRESSED_DATA to hold the
uncompressed pixel values for tiles that cannot be compressed, ZSCALE and ZZERO
to hold the linear scale factor and zero point offset which may be needed to
transform the raw uncompressed values back to the original image pixel values,
and ZBLANK to hold the integer value used to represent undefined pixels (if
any) in the image.

The content of the HDU data may be accessed using the .data attribute:

>>> f = pyfits.open('compressed_image.fits')
>>> f[1].data
array([[38, 43, 35, ..., 45, 43, 41],
 [36, 41, 37, ..., 42, 41, 39],
 [38, 45, 37, ..., 42, 35, 43],
 ...,
 [49, 52, 49, ..., 41, 35, 39],
 [57, 52, 49, ..., 40, 41, 43],
 [53, 57, 57, ..., 39, 35, 45]], dtype=int16)

Creating a Compressed Image HDU

To create a compressed image HDU from scratch, simply construct a
CompImageHDU object from an uncompressed image data array and its associated
image header. From there, the HDU can be treated just like any other image
HDU.

>>> hdu = pyfits.CompImageHDU(imageData, imageHeader)
>>> hdu.writeto('compressed_image.fits')
>>>

The signature for the CompImageHDU initializer method describes the possible
options for constructing a CompImageHDU object:

def __init__(self, data=None, header=None, name=None,
 compressionType='RICE_1',
 tileSize=None,
 hcompScale=0.,
 hcompSmooth=0
 quantizeLevel=16.):
"""data: data of the image
 header: header to be associated with the image
 name: the EXTNAME value; if this value is None, then
 the name from the input image header will be
 used; if there is no name in the input image
 header then the default name 'COMPRESSED_IMAGE'
 is used
 compressionType: compression algorithm 'RICE_1', 'PLIO_1',
 'GZIP_1', 'HCOMPRESS_1'
 tileSize: compression tile sizes default treats each row
 of image as a tile
 hcompScale: HCOMPRESS scale parameter
 hcompSmooth: HCOMPRESS smooth parameter
 quantizeLevel: floating point quantization level
"""

 Copyright 2013, J. C. Hsu, Paul Barrett, Christopher Hanley, James Taylor, Michael Droettboom, Erik M. Bray.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyFITS 3.0.13.dev documentation

 	PyFITS Users Guide

Miscellaneous Features

In this chapter, we’ll describe some of the miscellaneous features of PyFITS.

Warning Messages

PyFITS uses the Python warnings module to issue warning messages. The user can
suppress the warnings using the python command line argument -W"ignore"
when starting an interactive python session. For example:

python -W"ignore"

The user may also use the command line argument when running a python script as
follows:

python -W"ignore" myscript.py

It is also possible to suppress warnings from within a python script. For
instance, the warnings issued from a single call to the writeto convenience
function may be suppressed from within a python script as follows:

import warnings
import pyfits

...

warnings.resetwarnings()
warnings.filterwarnings('ignore', category=UserWarning, append=True)
pyfits.writeto(file, im, clobber=True)
warnings.resetwarnings()
warnings.filterwarnings('always', category=UserWarning, append=True)

...

PyFITS also issues warnings when deprecated API features are used. In Python
2.7 and up deprecation warnings are ignored by default. To run Python with
deprecation warnings enabled, either start Python with the -Wall argument,
or you can enable deprecation warnings specifically with -Wd.

In Python versions below 2.7, if you wish to squelch deprecation warnings,
you can start Python with -Wi::Deprecation. This sets all deprecation
warnings to ignored. See
http://docs.python.org/using/cmdline.html#cmdoption-unittest-discover-W
for more information on the -W argument.

 Copyright 2013, J. C. Hsu, Paul Barrett, Christopher Hanley, James Taylor, Michael Droettboom, Erik M. Bray.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyFITS 3.0.13.dev documentation

 	PyFITS Users Guide

Reference Manual

Examples

Converting a 3-color image (JPG) to separate FITS images

[image: Starting image]

[image: Red color information]
Red color information

[image: Green color information]
Green color information

[image: Blue color information]
Blue color information

#!/usr/bin/env python
import pyfits
import numpy
import Image

#get the image and color information
image = Image.open('hs-2009-14-a-web.jpg')
#image.show()
xsize, ysize = image.size
r, g, b = image.split()
rdata = r.getdata() # data is now an array of length ysize*xsize
gdata = g.getdata()
bdata = b.getdata()

create numpy arrays
npr = numpy.reshape(rdata, (ysize, xsize))
npg = numpy.reshape(gdata, (ysize, xsize))
npb = numpy.reshape(bdata, (ysize, xsize))

write out the fits images, the data numbers are still JUST the RGB
scalings; don't use for science
red = pyfits.PrimaryHDU()
red.header.update('LATOBS', "32:11:56") # add spurious header info
red.header.update('LONGOBS', "110:56")
red.data = npr
red.writeto('red.fits')
green = pyfits.PrimaryHDU()
green.header.update('LATOBS', "32:11:56")
green.header.update('LONGOBS', "110:56")
green.data = npg
green.writeto('green.fits')
blue = pyfits.PrimaryHDU()
blue.header.update('LATOBS', "32:11:56")
blue.header.update('LONGOBS', "110:56")
blue.data = npb
blue.writeto('blue.fits')

 Copyright 2013, J. C. Hsu, Paul Barrett, Christopher Hanley, James Taylor, Michael Droettboom, Erik M. Bray.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyFITS 3.0.13.dev documentation

API Documentation

	Opening Files
	Convenience functions

	HDU Lists
	HDUList

	Header Data Units
	PrimaryHDU

	GroupsHDU

	StreamingHDU

	Headers
	Header

	CardList

	Cards
	Card

	RecordValuedKeywordCard

	Free functions
	create_card

	create_card_from_string

	upper_key

	Tables
	BinTableHDU

	TableHDU

	Column

	ColDefs

	FITS_record

	FITS_rec

	GroupData

	Free functions
	new_table

	tdump

	tcreate

	Images
	ImageHDU

	CompImageHDU

	Section

	Exceptions and Utility Classes
	Exceptions
	VerifyError

	Utility Classes
	Delayed

	Undefined

	Verification options
	exception

	ignore

	fix

	silentfix

	warn

 Copyright 2013, J. C. Hsu, Paul Barrett, Christopher Hanley, James Taylor, Michael Droettboom, Erik M. Bray.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyFITS 3.0.13.dev documentation

 	API Documentation

Opening Files

	
pyfits.open(*args, **kwargs)

	Factory function to open a FITS file and return an HDUList object.

	Parameters:

		name : file path, file object or file-like object

File to be opened.

mode : str

Open mode, ‘readonly’ (default), ‘update’, ‘append’, ‘denywrite’, or
‘ostream’.

If name is a file object that is already opened, mode must
match the mode the file was opened with, copyonwrite (rb),
readonly (rb), update (rb+), append (ab+), ostream (w),
denywrite (rb)).

memmap : bool

Is memory mapping to be used?

classExtensions : dict (‘’Deprecated’‘)

A dictionary that maps pyfits classes to extensions of those
classes. When present in the dictionary, the extension class
will be constructed in place of the pyfits class.

kwargs : dict

optional keyword arguments, possible values are:

	uint : bool

Interpret signed integer data where BZERO is the
central value and BSCALE == 1 as unsigned integer
data. For example, int16 data with BZERO = 32768
and BSCALE = 1 would be treated as uint16 data.

Note, for backward compatibility, the kwarg uint16 may
be used instead. The kwarg was renamed when support was
added for integers of any size.

	ignore_missing_end : bool

Do not issue an exception when opening a file that is
missing an END card in the last header.

	checksum : bool

If True [http://docs.python.org/library/constants.html#True], verifies that both DATASUM and
CHECKSUM card values (when present in the HDU header)
match the header and data of all HDU’s in the file. Updates to a
file that already has a checksum will NOT be preserved unless the
file was opened with checksum=True. This behavior may change
in a future PyFITS version.

	disable_image_compression : bool

If True [http://docs.python.org/library/constants.html#True], treates compressed image HDU’s like normal
binary table HDU’s.

	do_not_scale_image_data : bool

If True [http://docs.python.org/library/constants.html#True], image data is not scaled using BSCALE/BZERO values
when read.

	Returns:

		hdulist : an HDUList object

HDUList containing all of the header data units in the
file.

Convenience functions

The functions in this module provide shortcuts for some of the most basic
operations on FITS files, such as reading and updating the header. They are
included directly in the ‘pyfits’ namespace so that they can be used like:

>>> pyfits.getheader(...)

These functions are primarily for convenience when working with FITS files in
the command-line interpreter. If performing several operations on the same
file, such as in a script, it is better to not use these functions, as each
one must open and re-parse the file. In such cases it is better to use
pyfits.open() and work directly with the pyfits.HDUList object
and underlying HDU objects.

Several of the convenience functions, such as getheader and getdata support
special arguments for selecting which extension HDU to use when working with a
multi-extension FITS file. There are a few supported argument formats for
selecting the extension. See the documentation for getdata for an
explanation of all the different formats.

Warning

All arguments to convenience functions other than the filename that are
not for selecting the extension HDU should be passed in as keyword
arguments. This is to avoid ambiguity and conflicts with the
extension arguments. For example, to set NAXIS=1 on the Primary HDU:

Wrong:

>>> pyfits.setval('myimage.fits', 'NAXIS', 1)

The above example will try to set the NAXIS value on the first extension
HDU to blank. That is, the argument ‘1’ is assumed to specify an extension
HDU.

Right:

>>> pyfits.setval('myimage.fits', 'NAXIS', value=1)

This will set the NAXIS keyword to 1 on the primary HDU (the default). To
specify the first extension HDU use:

>>> pyfits.setval('myimage.fits', 'NAXIS', value=1, ext=1)

This complexity arises out of the attempt to simultaneously support
multiple argument formats that were used in past versions of PyFITS.
Unfortunately, it is not possible to support all formats without
introducing some ambiguity. A future PyFITS release may standardize around
a single format and offically deprecate the other formats.

	
pyfits.convenience.getdata(filename, *args, **kwargs)

	Get the data from an extension of a FITS file (and optionally the
header).

	Parameters:

		filename : file path, file object, or file like object

File to get data from. If opened, mode must be one of the
following rb, rb+, or ab+.

ext :

The rest of the arguments are for extension specification.
They are flexible and are best illustrated by examples.

No extra arguments implies the primary header:

>>> getdata('in.fits')

By extension number:

>>> getdata('in.fits', 0) # the primary header
>>> getdata('in.fits', 2) # the second extension
>>> getdata('in.fits', ext=2) # the second extension

By name, i.e., EXTNAME value (if unique):

>>> getdata('in.fits', 'sci')
>>> getdata('in.fits', extname='sci') # equivalent

Note EXTNAME values are not case sensitive

By combination of EXTNAME and EXTVER`` as separate
arguments or as a tuple:

>>> getdata('in.fits', 'sci', 2) # EXTNAME='SCI' & EXTVER=2
>>> getdata('in.fits', extname='sci', extver=2) # equivalent
>>> getdata('in.fits', ('sci', 2)) # equivalent

Ambiguous or conflicting specifications will raise an exception:

>>> getdata('in.fits', ext=('sci',1), extname='err', extver=2)

header : bool (optional)

If True [http://docs.python.org/library/constants.html#True], return the data and the header of the specified HDU as a
tuple.

lower, upper : bool (optional)

If lower or upper are True [http://docs.python.org/library/constants.html#True], the field names in the
returned data object will be converted to lower or upper case,
respectively.

view : ndarray (optional)

When given, the data will be turned wrapped in the given ndarray
subclass by calling:

data.view(view)

kwargs :

Any additional keyword arguments to be passed to pyfits.open.

	Returns:

		array : array, record array or groups data object

Type depends on the type of the extension being referenced.

If the optional keyword header is set to True [http://docs.python.org/library/constants.html#True], this
function will return a (data, header) tuple.

	
pyfits.convenience.getheader(filename, *args, **kwargs)

	Get the header from an extension of a FITS file.

	Parameters:

		filename : file path, file object, or file like object

File to get header from. If an opened file object, its mode
must be one of the following rb, rb+, or ab+).

ext, extname, extver :

The rest of the arguments are for extension specification. See the
getdata documentation for explanations/examples.

kwargs :

Any additional keyword arguments to be passed to pyfits.open.

	Returns:

		header : Header object

	
pyfits.convenience.getval(filename, keyword, *args, **kwargs)

	Get a keyword’s value from a header in a FITS file.

	Parameters:

		filename : file path, file object, or file like object

Name of the FITS file, or file object (if opened, mode must be
one of the following rb, rb+, or ab+).

keyword : str

Keyword name

ext, extname, extver :

The rest of the arguments are for extension specification.
See getdata for explanations/examples.

kwargs :

Any additional keyword arguments to be passed to pyfits.open.
Note: This function automatically specifies do_not_scale_image_data
= True when opening the file so that values can be retrieved from the
unmodified header.

	Returns:

		keyword value : string, integer, or float

	
pyfits.convenience.setval(filename, keyword, *args, **kwargs)

	Set a keyword’s value from a header in a FITS file.

If the keyword already exists, it’s value/comment will be updated.
If it does not exist, a new card will be created and it will be
placed before or after the specified location. If no before or
after is specified, it will be appended at the end.

When updating more than one keyword in a file, this convenience
function is a much less efficient approach compared with opening
the file for update, modifying the header, and closing the file.

	Parameters:

		filename : file path, file object, or file like object

Name of the FITS file, or file object If opened, mode must be
update (rb+). An opened file object or GzipFile object will
be closed upon return.

keyword : str

Keyword name

value : str, int, float (optional)

Keyword value (default: None [http://docs.python.org/library/constants.html#None], meaning don’t modify)

comment : str (optional)

Keyword comment, (default: None [http://docs.python.org/library/constants.html#None], meaning don’t modify)

before : str, int (optional)

Name of the keyword, or index of the card before which the new card
will be placed. The argument before takes precedence over after if
both are specified (default: None [http://docs.python.org/library/constants.html#None]).

after : str, int (optional)

Name of the keyword, or index of the card after which the new card will
be placed. (default: None [http://docs.python.org/library/constants.html#None]).

savecomment : bool (optional)

When True [http://docs.python.org/library/constants.html#True], preserve the current comment for an existing keyword. The
argument savecomment takes precedence over comment if both
specified. If comment is not specified then the current comment will
automatically be preserved (default: False [http://docs.python.org/library/constants.html#False]).

ext, extname, extver :

The rest of the arguments are for extension specification.
See getdata for explanations/examples.

kwargs :

Any additional keyword arguments to be passed to pyfits.open.
Note: This function automatically specifies do_not_scale_image_data
= True when opening the file so that values can be retrieved from the
unmodified header.

	
pyfits.convenience.delval(filename, keyword, *args, **kwargs)

	Delete all instances of keyword from a header in a FITS file.

	Parameters:

		filename : file path, file object, or file like object

Name of the FITS file, or file object If opened, mode must be
update (rb+). An opened file object or GzipFile object will
be closed upon return.

keyword : str, int

Keyword name or index

ext, extname, extver :

The rest of the arguments are for extension specification.
See getdata for explanations/examples.

kwargs :

Any additional keyword arguments to be passed to pyfits.open.
Note: This function automatically specifies do_not_scale_image_data
= True when opening the file so that values can be retrieved from the
unmodified header.

	
pyfits.convenience.writeto(filename, data, header=None, output_verify='exception', clobber=False, checksum=False)

	Create a new FITS file using the supplied data/header.

	Parameters:

		filename : file path, file object, or file like object

File to write to. If opened, must be opened for append (ab+).

data : array, record array, or groups data object

data to write to the new file

header : Header object (optional)

the header associated with data. If None [http://docs.python.org/library/constants.html#None], a header
of the appropriate type is created for the supplied data. This
argument is optional.

output_verify : str

Output verification option. Must be one of "fix",
"silentfix", "ignore", "warn", or
"exception". See Verification options for more info.

clobber : bool (optional)

If True [http://docs.python.org/library/constants.html#True], and if filename already exists, it will overwrite
the file. Default is False [http://docs.python.org/library/constants.html#False].

checksum : bool (optional)

If True [http://docs.python.org/library/constants.html#True], adds both DATASUM and CHECKSUM cards to the
headers of all HDU’s written to the file.

	
pyfits.convenience.append(filename, data, header=None, checksum=False, verify=True, **kwargs)

	Append the header/data to FITS file if filename exists, create if not.

If only data is supplied, a minimal header is created.

	Parameters:

		filename : file path, file object, or file like object

File to write to. If opened, must be opened for update (rb+)
unless it is a new file, then it must be opened for append
(ab+). A file or GzipFile object opened for update will be
closed after return.

data : array, table, or group data object

the new data used for appending

header : Header object (optional)

The header associated with data. If None [http://docs.python.org/library/constants.html#None], an appropriate
header will be created for the data object supplied.

checksum : bool (optional)

When True [http://docs.python.org/library/constants.html#True] adds both DATASUM and CHECKSUM cards to
the header of the HDU when written to the file.

verify: bool (optional) :

When True [http://docs.python.org/library/constants.html#True], the existing FITS file will be read in to verify
it for correctness before appending. When False [http://docs.python.org/library/constants.html#False], content is
simply appended to the end of the file. Setting verify to
False [http://docs.python.org/library/constants.html#False] can be much faster.

kwargs :

Any additional keyword arguments to be passed to pyfits.open.

	
pyfits.convenience.update(filename, data, *args, **kwargs)

	Update the specified extension with the input data/header.

	Parameters:

		filename : file path, file object, or file like object

File to update. If opened, mode must be update (rb+). An
opened file object or GzipFile object will be closed upon
return.

data : array, table, or group data object

the new data used for updating

header : Header object (optional)

The header associated with data. If None [http://docs.python.org/library/constants.html#None], an appropriate
header will be created for the data object supplied.

ext, extname, extver :

The rest of the arguments are flexible: the 3rd argument can
be the header associated with the data. If the 3rd argument
is not a Header, it (and other positional arguments) are
assumed to be the extension specification(s). Header and
extension specs can also be keyword arguments. For example:

>>> update(file, dat, hdr, 'sci') # update the 'sci' extension
>>> update(file, dat, 3) # update the 3rd extension
>>> update(file, dat, hdr, 3) # update the 3rd extension
>>> update(file, dat, 'sci', 2) # update the 2nd SCI extension
>>> update(file, dat, 3, header=hdr) # update the 3rd extension
>>> update(file, dat, header=hdr, ext=5) # update the 5th extension

kwargs :

Any additional keyword arguments to be passed to pyfits.open.

	
pyfits.convenience.info(filename, output=None, **kwargs)

	Print the summary information on a FITS file.

This includes the name, type, length of header, data shape and type
for each extension.

	Parameters:

		filename : file path, file object, or file like object

FITS file to obtain info from. If opened, mode must be one of
the following: rb, rb+, or ab+.

output : file, bool (optional)

A file-like object to write the output to. If False, does not
output to a file and instead returns a list of tuples representing the
HDU info. Writes to sys.stdout by default.

kwargs :

Any additional keyword arguments to be passed to pyfits.open.
Note: This function sets ignore_missing_end=True by default.

 Copyright 2013, J. C. Hsu, Paul Barrett, Christopher Hanley, James Taylor, Michael Droettboom, Erik M. Bray.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyFITS 3.0.13.dev documentation

 	API Documentation

HDU Lists

[image: Inheritance diagram of HDUList]

HDUList

	
class pyfits.HDUList(hdus=[], file=None)

	Bases: list, pyfits.verify._Verify

HDU list class. This is the top-level FITS object. When a FITS
file is opened, a HDUList object is returned.

Construct a HDUList object.

	Parameters:

		hdus : sequence of HDU objects or single HDU, optional

The HDU object(s) to comprise the HDUList. Should be
instances of _BaseHDU.

file : file object, optional

The opened physical file associated with the HDUList.

	
append(*args, **kwargs)

	Append a new HDU to the HDUList.

	Parameters:

		hdu : instance of _BaseHDU

HDU to add to the HDUList.

classExtensions : dict

A dictionary that maps pyfits classes to extensions of those
classes. When present in the dictionary, the extension class
will be constructed in place of the pyfits class.

	
close(output_verify='exception', verbose=False, closed=True)

	Close the associated FITS file and memmap object, if any.

	Parameters:

		output_verify : str

Output verification option. Must be one of "fix",
"silentfix", "ignore", "warn", or
"exception". See Verification options for more info.

verbose : bool

When True [http://docs.python.org/library/constants.html#True], print out verbose messages.

closed : bool

When True [http://docs.python.org/library/constants.html#True], close the underlying file object.

	
fileinfo(index)

	Returns a dictionary detailing information about the locations
of the indexed HDU within any associated file. The values are
only valid after a read or write of the associated file with
no intervening changes to the HDUList.

	Parameters:

		index : int

Index of HDU for which info is to be returned.

	Returns:

		dictionary or None :

The dictionary details information about the locations of
the indexed HDU within an associated file. Returns None [http://docs.python.org/library/constants.html#None]
when the HDU is not associated with a file.

Dictionary contents:

	Key
	Value

	file
	File object associated with the HDU

	filename
	Name of associated file object

	filemode
	Mode in which the file was opened (readonly, copyonwrite,
update, append, denywrite, ostream)

	resized
	Flag that when True [http://docs.python.org/library/constants.html#True] indicates that the data has been
resized since the last read/write so the returned values
may not be valid.

	hdrLoc
	Starting byte location of header in file

	datLoc
	Starting byte location of data block in file

	datSpan
	Data size including padding

	
filename()

	Return the file name associated with the HDUList object if one exists.
Otherwise returns None.

	Returns:

		filename : a string containing the file name associated with the

HDUList object if an association exists. Otherwise returns
None.

	
flush(*args, **kwargs)

	Force a write of the HDUList back to the file (for append and
update modes only).

	Parameters:

		output_verify : str

Output verification option. Must be one of "fix",
"silentfix", "ignore", "warn", or
"exception". See Verification options for more info.

verbose : bool

When True [http://docs.python.org/library/constants.html#True], print verbose messages

classExtensions : dict

A dictionary that maps pyfits classes to extensions of
those classes. When present in the dictionary, the
extension class will be constructed in place of the pyfits
class.

	
index_of(key)

	Get the index of an HDU from the HDUList.

	Parameters:

		key : int, str or tuple of (string, int)

The key identifying the HDU. If key is a tuple, it is of
the form (key, ver) where ver is an EXTVER value
that must match the HDU being searched for.

	Returns:

		index : int

The index of the HDU in the HDUList.

	
info(output=None)

	Summarize the info of the HDUs in this HDUList.

Note that this function prints its results to the console—it
does not return a value.

	Parameters:

		output : file, bool (optional)

A file-like object to write the output to. If False, does not
output to a file and instead returns a list of tuples representing
the HDU info. Writes to sys.stdout by default.

	
insert(*args, **kwargs)

	Insert an HDU into the HDUList at the given index.

	Parameters:

		index : int

Index before which to insert the new HDU.

hdu : _BaseHDU instance

The HDU object to insert

classExtensions : dict

A dictionary that maps pyfits classes to extensions of those
classes. When present in the dictionary, the extension class
will be constructed in place of the pyfits class.

	
readall()

	Read data of all HDUs into memory.

	
update_extend()

	Make sure that if the primary header needs the keyword
EXTEND that it has it and it is correct.

	
verify(option='warn')

	Verify all values in the instance.

	Parameters:

		option : str

Output verification option. Must be one of "fix",
"silentfix", "ignore", "warn", or
"exception". See Verification options for more info.

	
writeto(*args, **kwargs)

	Write the HDUList to a new file.

	Parameters:

		fileobj : file path, file object or file-like object

File to write to. If a file object, must be opened for
append (ab+).

output_verify : str

Output verification option. Must be one of "fix",
"silentfix", "ignore", "warn", or
"exception". See Verification options for more info.

clobber : bool

When True [http://docs.python.org/library/constants.html#True], overwrite the output file if exists.

checksum : bool

When True [http://docs.python.org/library/constants.html#True] adds both DATASUM and CHECKSUM cards
to the headers of all HDU’s written to the file.

 Copyright 2013, J. C. Hsu, Paul Barrett, Christopher Hanley, James Taylor, Michael Droettboom, Erik M. Bray.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyFITS 3.0.13.dev documentation

 	API Documentation

Header Data Units

[image: Inheritance diagram of PrimaryHDU, ImageHDU, GroupsHDU, TableHDU, BinTableHDU, StreamingHDU]

The ImageHDU and CompImageHDU classes are discussed in the
section on Images.

The TableHDU and BinTableHDU classes are discussed in the
section on Tables.

PrimaryHDU

	
class pyfits.PrimaryHDU(data=None, header=None, do_not_scale_image_data=False, uint=False)

	Bases: pyfits.hdu.image._ImageBaseHDU

FITS primary HDU class.

Construct a primary HDU.

	Parameters:

		data : array or DELAYED, optional

The data in the HDU.

header : Header instance, optional

The header to be used (as a template). If header is
None [http://docs.python.org/library/constants.html#None], a minimal header will be provided.

do_not_scale_image_data : bool, optional

If True [http://docs.python.org/library/constants.html#True], image data is not scaled using BSCALE/BZERO values
when read.

uint : bool, optional

Interpret signed integer data where BZERO is the
central value and BSCALE == 1 as unsigned integer
data. For example, int16 data with BZERO = 32768
and BSCALE = 1 would be treated as uint16 data.

	
add_checksum(when=None, override_datasum=False, blocking='standard')

	Add the CHECKSUM and DATASUM cards to this HDU with
the values set to the checksum calculated for the HDU and the
data respectively. The addition of the DATASUM card may
be overridden.

	Parameters:

		when : str, optional

comment string for the cards; by default the comments
will represent the time when the checksum was calculated

override_datasum : bool, optional

add the CHECKSUM card only

blocking: str, optional :

“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

Notes

For testing purposes, first call add_datasum with a when
argument, then call add_checksum with a when argument and
override_datasum set to True [http://docs.python.org/library/constants.html#True]. This will provide
consistent comments for both cards and enable the generation
of a CHECKSUM card with a consistent value.

	
add_datasum(when=None, blocking='standard')

	Add the DATASUM card to this HDU with the value set to the
checksum calculated for the data.

	Parameters:

		when : str, optional

Comment string for the card that by default represents the
time when the checksum was calculated

blocking: str, optional :

“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

	Returns:

		checksum : int

The calculated datasum

Notes

For testing purposes, provide a when argument to enable the
comment value in the card to remain consistent. This will
enable the generation of a CHECKSUM card with a consistent
value.

	
copy()

	Make a copy of the HDU, both header and data are copied.

	
filebytes()

	Calculates and returns the number of bytes that this HDU will write to
a file.

	Parameters:

		None :

	Returns:

		Number of bytes :

	
fileinfo()

	Returns a dictionary detailing information about the locations
of this HDU within any associated file. The values are only
valid after a read or write of the associated file with no
intervening changes to the HDUList.

	Parameters:

		None :

	Returns:

		dictionary or None :

The dictionary details information about the locations of
this HDU within an associated file. Returns None [http://docs.python.org/library/constants.html#None] when
the HDU is not associated with a file.

Dictionary contents:

	Key
	Value

	file
	File object associated with the HDU

	filemode
	Mode in which the file was opened (readonly, copyonwrite,
update, append, ostream)

	hdrLoc
	Starting byte location of header in file

	datLoc
	Starting byte location of data block in file

	datSpan
	Data size including padding

	
classmethod fromstring(data, fileobj=None, offset=0, checksum=False, ignore_missing_end=False, **kwargs)

	Creates a new HDU object of the appropriate type from a string
containing the HDU’s entire header and, optionally, its data.

	Parameters:

		data : str

A byte string contining the HDU’s header and, optionally, its data.
If fileobj is not specified, and the length of data extends
beyond the header, then the trailing data is taken to be the HDU’s
data. If fileobj is specified then the trailing data is ignored.

fileobj : file, optional

The file-like object that this HDU was read from.

offset : int, optional

If fileobj is specified, the offset into the file-like object at
which this HDU begins.

checksum : bool optional

Check the HDU’s checksum and/or datasum.

ignore_missing_end : bool, optional

Ignore a missing end card in the header data. Note that without
the end card the end of the header can’t be found, so the entire
data is just assumed to be the header.

kwargs : optional

May contain additional keyword arguments specific to an HDU type.
Any unrecognized kwargs are simply ignored.

	
classmethod match_header(header)

	

	
classmethod readfrom(fileobj, checksum=False, ignore_missing_end=False, **kwargs)

	Read the HDU from a file. Normally an HDU should be opened with
fitsopen() which reads the entire HDU list in a FITS file. But this
method is still provided for symmetry with writeto().

	Parameters:

		fileobj : file object or file-like object

Input FITS file. The file’s seek pointer is assumed to be at the
beginning of the HDU.

checksum : bool

If True [http://docs.python.org/library/constants.html#True], verifies that both DATASUM and
CHECKSUM card values (when present in the HDU header)
match the header and data of all HDU’s in the file.

ignore_missing_end : bool

Do not issue an exception when opening a file that is
missing an END card in the last header.

	
classmethod register_hdu(hducls)

	

	
req_cards(keyword, pos, test, fix_value, option, errlist)

	Check the existence, location, and value of a required Card.

TODO: Write about parameters

If pos = None [http://docs.python.org/library/constants.html#None], it can be anywhere. If the card does not exist,
the new card will have the fix_value as its value when created.
Also check the card’s value by using the test [http://docs.python.org/library/test.html#module-test] argument.

	
run_option(option='warn', err_text='', fix_text='Fixed.', fix=None, fixable=True)

	Execute the verification with selected option.

	
scale(type=None, option='old', bscale=1, bzero=0)

	Scale image data by using BSCALE/BZERO.

Call to this method will scale data and update the keywords
of BSCALE and BZERO in _header. This method should
only be used right before writing to the output file, as the
data will be scaled and is therefore not very usable after the
call.

	Parameters:

		type : str, optional

destination data type, use a string representing a numpy
dtype name, (e.g. 'uint8', 'int16', 'float32'
etc.). If is None [http://docs.python.org/library/constants.html#None], use the current data type.

option : str

How to scale the data: if "old", use the original
BSCALE and BZERO values when the data was
read/created. If "minmax", use the minimum and maximum
of the data to scale. The option will be overwritten by
any user specified bscale/bzero values.

bscale, bzero : int, optional

User-specified BSCALE and BZERO values.

	
size()

	Size (in bytes) of the data portion of the HDU.

	
classmethod unregister_hdu(hducls)

	

	
update_ext_name(value, comment=None, before=None, after=None, savecomment=False)

	Update the extension name associated with the HDU.

If the keyword already exists in the Header, it’s value and/or comment
will be updated. If it does not exist, a new card will be created
and it will be placed before or after the specified location.
If no before or after is specified, it will be appended at
the end.

	Parameters:

		value : str

value to be used for the new extension name

comment : str, optional

to be used for updating, default=None.

before : str or int, optional

name of the keyword, or index of the Card before which
the new card will be placed in the Header. The argument
before takes precedence over after if both specified.

after : str or int, optional

name of the keyword, or index of the Card after which
the new card will be placed in the Header.

savecomment : bool, optional

When True [http://docs.python.org/library/constants.html#True], preserve the current comment for an existing
keyword. The argument savecomment takes precedence over
comment if both specified. If comment is not
specified then the current comment will automatically be
preserved.

	
update_ext_version(value, comment=None, before=None, after=None, savecomment=False)

	Update the extension version associated with the HDU.

If the keyword already exists in the Header, it’s value and/or comment
will be updated. If it does not exist, a new card will be created
and it will be placed before or after the specified location.
If no before or after is specified, it will be appended at
the end.

	Parameters:

		value : str

value to be used for the new extension version

comment : str, optional

to be used for updating, default=None.

before : str or int, optional

name of the keyword, or index of the Card before which
the new card will be placed in the Header. The argument
before takes precedence over after if both specified.

after : str or int, optional

name of the keyword, or index of the Card after which
the new card will be placed in the Header.

savecomment : bool, optional

When True [http://docs.python.org/library/constants.html#True], preserve the current comment for an existing
keyword. The argument savecomment takes precedence over
comment if both specified. If comment is not
specified then the current comment will automatically be
preserved.

	
update_header()

	

	
verify(option='warn')

	Verify all values in the instance.

	Parameters:

		option : str

Output verification option. Must be one of "fix",
"silentfix", "ignore", "warn", or
"exception". See Verification options for more info.

	
verify_checksum(blocking='standard')

	Verify that the value in the CHECKSUM keyword matches the
value calculated for the current HDU CHECKSUM.

	blocking: str, optional

	“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

	Returns:

		valid : int

	0 - failure

	1 - success

	2 - no CHECKSUM keyword present

	
verify_datasum(blocking='standard')

	Verify that the value in the DATASUM keyword matches the value
calculated for the DATASUM of the current HDU data.

	blocking: str, optional

	“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

	Returns:

		valid : int

	0 - failure

	1 - success

	2 - no DATASUM keyword present

	
writeto(*args, **kwargs)

	Write the HDU to a new file. This is a convenience method to
provide a user easier output interface if only one HDU needs
to be written to a file.

	Parameters:

		name : file path, file object or file-like object

Output FITS file. If opened, must be opened for append
(“ab+”)).

output_verify : str

Output verification option. Must be one of "fix",
"silentfix", "ignore", "warn", or
"exception". See Verification options for more info.

clobber : bool

Overwrite the output file if exists.

classExtensions : dict

A dictionary that maps pyfits classes to extensions of
those classes. When present in the dictionary, the
extension class will be constructed in place of the pyfits
class.

checksum : bool

When True [http://docs.python.org/library/constants.html#True] adds both DATASUM and CHECKSUM cards
to the header of the HDU when written to the file.

	
ImgCode = {'uint64': 64, 'uint16': 16, 'int16': 16, 'int64': 64, 'int32': 32, 'float64': -64, 'uint8': 8, 'float32': -32, 'uint32': 32}

	

	
NumCode = {-64: 'float64', -32: 'float32', 32: 'int32', 8: 'uint8', 64: 'int64', 16: 'int16'}

	

	
data

	Works similarly to property(), but computes the value only once.

Adapted from the recipe at
http://code.activestate.com/recipes/363602-lazy-property-evaluation

	
header

	

	
is_image

	

	
name

	

	
section

	Access a section of the image array without loading the entire array
into memory. The Section object returned by this attribute is
not meant to be used directly by itself. Rather, slices of the section
return the appropriate slice of the data, and loads only that section
into memory.

Sections are mostly obsoleted by memmap support, but should still be
used to deal with very large scaled images. See the
Data Sections section of the PyFITS documentation for more
details.

	
shape

	Shape of the image array–should be equivalent to self.data.shape.

	
standard_keyword_comments = {'BITPIX': 'array data type', 'XTENSION': 'Image extension', 'SIMPLE': 'conforms to FITS standard', 'NAXIS': 'number of array dimensions', 'PCOUNT': 'number of parameters', 'GROUPS': 'has groups', 'GCOUNT': 'number of groups'}

	

GroupsHDU

	
class pyfits.GroupsHDU(data=None, header=None, name=None)

	Bases: pyfits.hdu.image.PrimaryHDU, pyfits.hdu.table._TableLikeHDU

FITS Random Groups HDU class.

TODO: Write me

	
add_checksum(when=None, override_datasum=False, blocking='standard')

	Add the CHECKSUM and DATASUM cards to this HDU with
the values set to the checksum calculated for the HDU and the
data respectively. The addition of the DATASUM card may
be overridden.

	Parameters:

		when : str, optional

comment string for the cards; by default the comments
will represent the time when the checksum was calculated

override_datasum : bool, optional

add the CHECKSUM card only

blocking: str, optional :

“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

Notes

For testing purposes, first call add_datasum with a when
argument, then call add_checksum with a when argument and
override_datasum set to True [http://docs.python.org/library/constants.html#True]. This will provide
consistent comments for both cards and enable the generation
of a CHECKSUM card with a consistent value.

	
add_datasum(when=None, blocking='standard')

	Add the DATASUM card to this HDU with the value set to the
checksum calculated for the data.

	Parameters:

		when : str, optional

Comment string for the card that by default represents the
time when the checksum was calculated

blocking: str, optional :

“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

	Returns:

		checksum : int

The calculated datasum

Notes

For testing purposes, provide a when argument to enable the
comment value in the card to remain consistent. This will
enable the generation of a CHECKSUM card with a consistent
value.

	
copy()

	Make a copy of the HDU, both header and data are copied.

	
filebytes()

	Calculates and returns the number of bytes that this HDU will write to
a file.

	Parameters:

		None :

	Returns:

		Number of bytes :

	
fileinfo()

	Returns a dictionary detailing information about the locations
of this HDU within any associated file. The values are only
valid after a read or write of the associated file with no
intervening changes to the HDUList.

	Parameters:

		None :

	Returns:

		dictionary or None :

The dictionary details information about the locations of
this HDU within an associated file. Returns None [http://docs.python.org/library/constants.html#None] when
the HDU is not associated with a file.

Dictionary contents:

	Key
	Value

	file
	File object associated with the HDU

	filemode
	Mode in which the file was opened (readonly, copyonwrite,
update, append, ostream)

	hdrLoc
	Starting byte location of header in file

	datLoc
	Starting byte location of data block in file

	datSpan
	Data size including padding

	
classmethod fromstring(data, fileobj=None, offset=0, checksum=False, ignore_missing_end=False, **kwargs)

	Creates a new HDU object of the appropriate type from a string
containing the HDU’s entire header and, optionally, its data.

	Parameters:

		data : str

A byte string contining the HDU’s header and, optionally, its data.
If fileobj is not specified, and the length of data extends
beyond the header, then the trailing data is taken to be the HDU’s
data. If fileobj is specified then the trailing data is ignored.

fileobj : file, optional

The file-like object that this HDU was read from.

offset : int, optional

If fileobj is specified, the offset into the file-like object at
which this HDU begins.

checksum : bool optional

Check the HDU’s checksum and/or datasum.

ignore_missing_end : bool, optional

Ignore a missing end card in the header data. Note that without
the end card the end of the header can’t be found, so the entire
data is just assumed to be the header.

kwargs : optional

May contain additional keyword arguments specific to an HDU type.
Any unrecognized kwargs are simply ignored.

	
classmethod match_header(header)

	

	
classmethod readfrom(fileobj, checksum=False, ignore_missing_end=False, **kwargs)

	Read the HDU from a file. Normally an HDU should be opened with
fitsopen() which reads the entire HDU list in a FITS file. But this
method is still provided for symmetry with writeto().

	Parameters:

		fileobj : file object or file-like object

Input FITS file. The file’s seek pointer is assumed to be at the
beginning of the HDU.

checksum : bool

If True [http://docs.python.org/library/constants.html#True], verifies that both DATASUM and
CHECKSUM card values (when present in the HDU header)
match the header and data of all HDU’s in the file.

ignore_missing_end : bool

Do not issue an exception when opening a file that is
missing an END card in the last header.

	
classmethod register_hdu(hducls)

	

	
req_cards(keyword, pos, test, fix_value, option, errlist)

	Check the existence, location, and value of a required Card.

TODO: Write about parameters

If pos = None [http://docs.python.org/library/constants.html#None], it can be anywhere. If the card does not exist,
the new card will have the fix_value as its value when created.
Also check the card’s value by using the test [http://docs.python.org/library/test.html#module-test] argument.

	
run_option(option='warn', err_text='', fix_text='Fixed.', fix=None, fixable=True)

	Execute the verification with selected option.

	
scale(type=None, option='old', bscale=1, bzero=0)

	Scale image data by using BSCALE/BZERO.

Call to this method will scale data and update the keywords
of BSCALE and BZERO in _header. This method should
only be used right before writing to the output file, as the
data will be scaled and is therefore not very usable after the
call.

	Parameters:

		type : str, optional

destination data type, use a string representing a numpy
dtype name, (e.g. 'uint8', 'int16', 'float32'
etc.). If is None [http://docs.python.org/library/constants.html#None], use the current data type.

option : str

How to scale the data: if "old", use the original
BSCALE and BZERO values when the data was
read/created. If "minmax", use the minimum and maximum
of the data to scale. The option will be overwritten by
any user specified bscale/bzero values.

bscale, bzero : int, optional

User-specified BSCALE and BZERO values.

	
size()

	Returns the size (in bytes) of the HDU’s data part.

	
classmethod unregister_hdu(hducls)

	

	
update_ext_name(value, comment=None, before=None, after=None, savecomment=False)

	Update the extension name associated with the HDU.

If the keyword already exists in the Header, it’s value and/or comment
will be updated. If it does not exist, a new card will be created
and it will be placed before or after the specified location.
If no before or after is specified, it will be appended at
the end.

	Parameters:

		value : str

value to be used for the new extension name

comment : str, optional

to be used for updating, default=None.

before : str or int, optional

name of the keyword, or index of the Card before which
the new card will be placed in the Header. The argument
before takes precedence over after if both specified.

after : str or int, optional

name of the keyword, or index of the Card after which
the new card will be placed in the Header.

savecomment : bool, optional

When True [http://docs.python.org/library/constants.html#True], preserve the current comment for an existing
keyword. The argument savecomment takes precedence over
comment if both specified. If comment is not
specified then the current comment will automatically be
preserved.

	
update_ext_version(value, comment=None, before=None, after=None, savecomment=False)

	Update the extension version associated with the HDU.

If the keyword already exists in the Header, it’s value and/or comment
will be updated. If it does not exist, a new card will be created
and it will be placed before or after the specified location.
If no before or after is specified, it will be appended at
the end.

	Parameters:

		value : str

value to be used for the new extension version

comment : str, optional

to be used for updating, default=None.

before : str or int, optional

name of the keyword, or index of the Card before which
the new card will be placed in the Header. The argument
before takes precedence over after if both specified.

after : str or int, optional

name of the keyword, or index of the Card after which
the new card will be placed in the Header.

savecomment : bool, optional

When True [http://docs.python.org/library/constants.html#True], preserve the current comment for an existing
keyword. The argument savecomment takes precedence over
comment if both specified. If comment is not
specified then the current comment will automatically be
preserved.

	
update_header()

	

	
verify(option='warn')

	Verify all values in the instance.

	Parameters:

		option : str

Output verification option. Must be one of "fix",
"silentfix", "ignore", "warn", or
"exception". See Verification options for more info.

	
verify_checksum(blocking='standard')

	Verify that the value in the CHECKSUM keyword matches the
value calculated for the current HDU CHECKSUM.

	blocking: str, optional

	“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

	Returns:

		valid : int

	0 - failure

	1 - success

	2 - no CHECKSUM keyword present

	
verify_datasum(blocking='standard')

	Verify that the value in the DATASUM keyword matches the value
calculated for the DATASUM of the current HDU data.

	blocking: str, optional

	“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

	Returns:

		valid : int

	0 - failure

	1 - success

	2 - no DATASUM keyword present

	
writeto(*args, **kwargs)

	Write the HDU to a new file. This is a convenience method to
provide a user easier output interface if only one HDU needs
to be written to a file.

	Parameters:

		name : file path, file object or file-like object

Output FITS file. If opened, must be opened for append
(“ab+”)).

output_verify : str

Output verification option. Must be one of "fix",
"silentfix", "ignore", "warn", or
"exception". See Verification options for more info.

clobber : bool

Overwrite the output file if exists.

classExtensions : dict

A dictionary that maps pyfits classes to extensions of
those classes. When present in the dictionary, the
extension class will be constructed in place of the pyfits
class.

checksum : bool

When True [http://docs.python.org/library/constants.html#True] adds both DATASUM and CHECKSUM cards
to the header of the HDU when written to the file.

	
ImgCode = {'uint64': 64, 'uint16': 16, 'int16': 16, 'int64': 64, 'int32': 32, 'float64': -64, 'uint8': 8, 'float32': -32, 'uint32': 32}

	

	
NumCode = {-64: 'float64', -32: 'float32', 32: 'int32', 8: 'uint8', 64: 'int64', 16: 'int16'}

	

	
columns

	Works similarly to property(), but computes the value only once.

Adapted from the recipe at
http://code.activestate.com/recipes/363602-lazy-property-evaluation

	
data

	Works similarly to property(), but computes the value only once.

Adapted from the recipe at
http://code.activestate.com/recipes/363602-lazy-property-evaluation

	
header

	

	
is_image

	

	
name

	

	
parnames

	Works similarly to property(), but computes the value only once.

Adapted from the recipe at
http://code.activestate.com/recipes/363602-lazy-property-evaluation

	
section

	Access a section of the image array without loading the entire array
into memory. The Section object returned by this attribute is
not meant to be used directly by itself. Rather, slices of the section
return the appropriate slice of the data, and loads only that section
into memory.

Sections are mostly obsoleted by memmap support, but should still be
used to deal with very large scaled images. See the
Data Sections section of the PyFITS documentation for more
details.

	
shape

	Shape of the image array–should be equivalent to self.data.shape.

	
standard_keyword_comments = {'BITPIX': 'array data type', 'XTENSION': 'Image extension', 'SIMPLE': 'conforms to FITS standard', 'NAXIS': 'number of array dimensions', 'PCOUNT': 'number of parameters', 'GROUPS': 'has groups', 'GCOUNT': 'number of groups'}

	

StreamingHDU

	
class pyfits.StreamingHDU(name, header)

	Bases: object

A class that provides the capability to stream data to a FITS file
instead of requiring data to all be written at once.

The following pseudocode illustrates its use:

header = pyfits.Header()

for all the cards you need in the header:
 header.update(key, value, comment)

shdu = pyfits.StreamingHDU('filename.fits',header)

for each piece of data:
 shdu.write(data)

shdu.close()

Construct a StreamingHDU object given a file name and a header.

	Parameters:

		name : file path, file object, or file like object

The file to which the header and data will be streamed.
If opened, the file object must be opened for append
(ab+).

header : Header instance

The header object associated with the data to be written
to the file.

Notes

The file will be opened and the header appended to the end of
the file. If the file does not already exist, it will be
created, and if the header represents a Primary header, it
will be written to the beginning of the file. If the file
does not exist and the provided header is not a Primary
header, a default Primary HDU will be inserted at the
beginning of the file and the provided header will be added as
the first extension. If the file does already exist, but the
provided header represents a Primary header, the header will
be modified to an image extension header and appended to the
end of the file.

	
close()

	Close the physical FITS file.

	
size()

	Return the size (in bytes) of the data portion of the HDU.

	
write(data)

	Write the given data to the stream.

	Parameters:

		data : ndarray

Data to stream to the file.

	Returns:

		writecomplete : int

Flag that when True [http://docs.python.org/library/constants.html#True] indicates that all of the required
data has been written to the stream.

Notes

Only the amount of data specified in the header provided to
the class constructor may be written to the stream. If the
provided data would cause the stream to overflow, an IOError
exception is raised and the data is not written. Once
sufficient data has been written to the stream to satisfy the
amount specified in the header, the stream is padded to fill a
complete FITS block and no more data will be accepted. An
attempt to write more data after the stream has been filled
will raise an IOError exception. If the dtype of the input
data does not match what is expected by the header, a
TypeError exception is raised.

 Copyright 2013, J. C. Hsu, Paul Barrett, Christopher Hanley, James Taylor, Michael Droettboom, Erik M. Bray.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyFITS 3.0.13.dev documentation

 	API Documentation

Headers

[image: Inheritance diagram of Header, CardList]

Header

	
class pyfits.Header(cards=[], txtfile=None)

	Bases: _abcoll.MutableMapping

FITS header class.

The purpose of this class is to present the header like a
dictionary as opposed to a list of cards.

The attribute ascard supplies the header like a list of cards.

The header class uses the card’s keyword as the dictionary key and
the cards value is the dictionary value.

The has_key, get, and keys methods are implemented to
provide the corresponding dictionary functionality. The header
may be indexed by keyword value and like a dictionary, the
associated value will be returned. When the header contains cards
with duplicate keywords, only the value of the first card with the
given keyword will be returned.

The header may also be indexed by card list index number. In that
case, the value of the card at the given index in the card list
will be returned.

A delete method has been implemented to allow deletion from the
header. When del is called, all cards with the given keyword
are deleted from the header.

The Header class has an associated iterator class _Header_iter
which will allow iteration over the unique keywords in the header
dictionary.

Construct a Header from a CardList and/or text file.

	Parameters:

		cards : A list of Card objects, optional

The cards to initialize the header with.

txtfile : file path, file object or file-like object, optional

Input ASCII header parameters file.

	
add_blank(value='', before=None, after=None)

	Add a blank card.

	Parameters:

		value : str, optional

text to be added.

before : str or int, optional

same as in Header.update

after : str or int, optional

same as in Header.update

	
add_comment(value, before=None, after=None)

	Add a COMMENT card.

	Parameters:

		value : str

text to be added.

before : str or int, optional

same as in Header.update

after : str or int, optional

same as in Header.update

	
add_history(value, before=None, after=None)

	Add a HISTORY card.

	Parameters:

		value : str

history text to be added.

before : str or int, optional

same as in Header.update

after : str or int, optional

same as in Header.update

	
ascardlist(*args, **kwargs)

	Returns a CardList object.

	
clear()

	

	
copy(strip=False)

	Make a copy of the Header.

	Parameters:

		strip : bool, optional

If True, strip any headers that are specific to one of the standard
HDU types, so that this header can be used in a different HDU.

	
fromTxtFile(fileobj, replace=False)

	Input the header parameters from an ASCII file.

The input header cards will be used to update the current
header. Therefore, when an input card key matches a card key
that already exists in the header, that card will be updated
in place. Any input cards that do not already exist in the
header will be added. Cards will not be deleted from the
header.

	Parameters:

		fileobj : file path, file object or file-like object

Input header parameters file.

replace : bool, optional

When True [http://docs.python.org/library/constants.html#True], indicates that the entire header should be
replaced with the contents of the ASCII file instead of
just updating the current header.

	
classmethod fromstring(data)

	Creates an HDU header from a byte string containing the entire header
data.

	Parameters:

		data : str

String containing the entire header.

	
get(key, default=None)

	

	
get_comment()

	Get all comment cards as a list of string texts.

	
get_history()

	Get all history cards as a list of string texts.

	
has_key(*args, **kwargs)

	Check for existence of a keyword.

	Parameters:

		key : str or int

Keyword name. If given an index, always returns 0.

	Returns:

		has_key : bool

Returns True [http://docs.python.org/library/constants.html#True] if found, otherwise, False [http://docs.python.org/library/constants.html#False].

	
items()

	Override items since the default implementation does not propertly
handle duplicate keywords.

	
iteritems()

	Override iteritems since the default implementation does not properly
handle duplicate keywords.

	
iterkeys()

	

	
itervalues()

	Override itervalues since the default implementation does not
properly handle duplicate keywords.

	
keys()

	Return a list of keys with duplicates removed.

Warning

There is a surprising incogruity in Header objecets between
Header.keys() and Header.iterkeys(). The latter does
not remove duplicates. This incongruity exists for historical
reasons, but is not be design. In PyFITS 3.1 it is done away with,
and :meth:Header.keys returns the exact keywords appearin the
header, including duplicates.

	
pop(key, default=<object object at 0x7fb4f1341030>)

	

	
popitem()

	

	
rename_key(oldkey, newkey, force=False)

	Rename a card’s keyword in the header.

	Parameters:

		oldkey : str or int

old keyword

newkey : str

new keyword

force : bool

When True [http://docs.python.org/library/constants.html#True], if new key name already exists, force to have
duplicate name.

	
setdefault(keyword, default='')

	PyFITS < 3.1 won’t allow item assignment to keywords that don’t already
exist, but for the setdefault dict method to work at all, it needs to
be able to add nonexistent keywords with the default value.

	
toTxtFile(fileobj, clobber=False)

	Output the header parameters to a file in ASCII format.

	Parameters:

		fileobj : file path, file object or file-like object

Output header parameters file.

clobber : bool

When True [http://docs.python.org/library/constants.html#True], overwrite the output file if it exists.

	
update(key, value, comment=None, before=None, after=None, savecomment=False)

	Update one header card.

If the keyword already exists, it’s value and/or comment will
be updated. If it does not exist, a new card will be created
and it will be placed before or after the specified location.
If no before or after is specified, it will be appended at
the end.

	Parameters:

		key : str

keyword

value : str

value to be used for updating

comment : str, optional

to be used for updating, default=None.

before : str or int, optional

name of the keyword, or index of the Card before which
the new card will be placed. The argument before takes
precedence over after if both specified.

after : str or int, optional

name of the keyword, or index of the Card after which
the new card will be placed.

savecomment : bool, optional

When True [http://docs.python.org/library/constants.html#True], preserve the current comment for an existing
keyword. The argument savecomment takes precedence over
comment if both specified. If comment is not
specified then the current comment will automatically be
preserved.

	
values()

	Override values since the default implementation does not properly
handle duplicate keywords.

CardList

	
class pyfits.CardList(cards=[], keylist=None)

	Bases: list

FITS header card list class.

Construct the CardList object from a list of Card objects.

	Parameters:

		cards :

A list of Card objects.

	
append(card, useblanks=True, bottom=False)

	Append a Card to the CardList.

	Parameters:

		card : Card object

The Card to be appended.

useblanks : bool, optional

Use any extra blank cards?

If useblanks is True [http://docs.python.org/library/constants.html#True], and if there are blank cards
directly before END, it will use this space first,
instead of appending after these blank cards, so the total
space will not increase. When useblanks is False [http://docs.python.org/library/constants.html#False], the
card will be appended at the end, even if there are blank
cards in front of END.

bottom : bool, optional

If False [http://docs.python.org/library/constants.html#False] the card will be appended after the last
non-commentary card. If True [http://docs.python.org/library/constants.html#True] the card will be appended
after the last non-blank card.

	
copy()

	Make a (deep)copy of the CardList.

	
count_blanks()

	Returns how many blank cards are directly before the END
card.

	
filterList(key)

	Construct a CardList that contains references to all of the cards in
this CardList that match the input key value including any special
filter keys (*, ?, and ...).

	Parameters:

		key : str

key value to filter the list with

	Returns:

		cardlist : :

A CardList object containing references to all the
requested cards.

	
filter_list(key)

	Construct a CardList that contains references to all of the cards in
this CardList that match the input key value including any special
filter keys (*, ?, and ...).

	Parameters:

		key : str

key value to filter the list with

	Returns:

		cardlist : :

A CardList object containing references to all the
requested cards.

	
index_of(key, backward=False)

	Get the index of a keyword in the CardList.

	Parameters:

		key : str or int

The keyword name (a string) or the index (an integer).

backward : bool, optional

When True [http://docs.python.org/library/constants.html#True], search the index from the END, i.e.,
backward.

	Returns:

		index : int

The index of the Card with the given keyword.

	
insert(pos, card, useblanks=True)

	Insert a Card to the CardList.

	Parameters:

		pos : int

The position (index, keyword name will not be allowed) to
insert. The new card will be inserted before it.

card : Card object

The card to be inserted.

useblanks : bool, optional

If useblanks is True [http://docs.python.org/library/constants.html#True], and if there are blank cards
directly before END, it will use this space first,
instead of appending after these blank cards, so the total
space will not increase. When useblanks is False [http://docs.python.org/library/constants.html#False], the
card will be appended at the end, even if there are blank
cards in front of END.

	
keys()

	Return a list of all keywords from the CardList.

Keywords include field_specifier for
RecordValuedKeywordCard objects.

	
values()

	Return a list of the values of all cards in the CardList.

For RecordValuedKeywordCard objects, the value returned is
the floating point value, exclusive of the
field_specifier.

 Copyright 2013, J. C. Hsu, Paul Barrett, Christopher Hanley, James Taylor, Michael Droettboom, Erik M. Bray.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyFITS 3.0.13.dev documentation

 	API Documentation

Cards

[image: Inheritance diagram of Card, RecordValuedKeywordCard]

Card

	
class pyfits.Card(key='', value='', comment='')

	Bases: pyfits.verify._Verify

Construct a card from key, value, and (optionally) comment.
Any specifed arguments, except defaults, must be compliant to FITS
standard.

	Parameters:

		key : str, optional

keyword name

value : str, optional

keyword value

comment : str, optional

comment

	
ascardimage(*args, **kwargs)

	

	
classmethod fromstring(cardimage)

	Construct a Card object from a (raw) string. It will pad the
string if it is not the length of a card image (80 columns).
If the card image is longer than 80 columns, assume it
contains CONTINUE card(s).

	
run_option(option='warn', err_text='', fix_text='Fixed.', fix=None, fixable=True)

	Execute the verification with selected option.

	
verify(option='warn')

	Verify all values in the instance.

	Parameters:

		option : str

Output verification option. Must be one of "fix",
"silentfix", "ignore", "warn", or
"exception". See Verification options for more info.

	
cardimage

	

	
comment

	Card comment

	
key

	Card keyword

	
length = 80

	

	
value

	Card value

RecordValuedKeywordCard

	
class pyfits.RecordValuedKeywordCard(key='', value='', comment='')

	Bases: pyfits.card.Card

Class to manage record-valued keyword cards as described in the
FITS WCS Paper IV proposal for representing a more general
distortion model.

Record-valued keyword cards are string-valued cards where the
string is interpreted as a definition giving a record field name,
and its floating point value. In a FITS header they have the
following syntax:

keyword = 'field-specifier: float'

where keyword [http://docs.python.org/library/keyword.html#module-keyword] is a standard eight-character FITS keyword name,
float [http://docs.python.org/library/functions.html#float] is the standard FITS ASCII representation of a floating
point number, and these are separated by a colon followed by a
single blank. The grammar for field-specifier is:

field-specifier:
 field
 field-specifier.field

field:
 identifier
 identifier.index

where identifier is a sequence of letters (upper or lower case),
underscores, and digits of which the first character must not be a
digit, and index is a sequence of digits. No blank characters
may occur in the field-specifier. The index is provided
primarily for defining array elements though it need not be used
for that purpose.

Multiple record-valued keywords of the same name but differing
values may be present in a FITS header. The field-specifier may
be viewed as part of the keyword name.

Some examples follow:

DP1 = 'NAXIS: 2'
DP1 = 'AXIS.1: 1'
DP1 = 'AXIS.2: 2'
DP1 = 'NAUX: 2'
DP1 = 'AUX.1.COEFF.0: 0'
DP1 = 'AUX.1.POWER.0: 1'
DP1 = 'AUX.1.COEFF.1: 0.00048828125'
DP1 = 'AUX.1.POWER.1: 1'

	Parameters:

		key : str, optional

The key, either the simple key or one that contains
a field-specifier

value : str, optional

The value, either a simple value or one that contains a
field-specifier

comment : str, optional

The comment

	
ascardimage(*args, **kwargs)

	

	
classmethod coerce(card)

	Coerces an input Card object to a RecordValuedKeywordCard
object if the value of the card meets the requirements of this
type of card.

	Parameters:

		card : Card object

A Card object to coerce

	Returns:

		card :

	If the input card is coercible:

a new RecordValuedKeywordCard constructed from the
key, value, and comment of the input card.

	If the input card is not coercible:

the input card

	
classmethod create(key='', value='', comment='')

	Create a card given the input key, value, and comment.
If the input key and value qualify for a
RecordValuedKeywordCard then that is the object created.
Otherwise, a standard Card object is created.

	Parameters:

		key : str, optional

The key

value : str, optional

The value

comment : str, optional

The comment

	Returns:

		card :

Either a RecordValuedKeywordCard or a Card object.

	
classmethod createCard(*args, **kwargs)

	Create a card given the input key, value, and comment.
If the input key and value qualify for a
RecordValuedKeywordCard then that is the object created.
Otherwise, a standard Card object is created.

	Parameters:

		key : str, optional

The key

value : str, optional

The value

comment : str, optional

The comment

	Returns:

		card :

Either a RecordValuedKeywordCard or a Card object.

	
classmethod createCardFromString(*args, **kwargs)

	Create a card given the input [http://docs.python.org/library/functions.html#input] string. If the input [http://docs.python.org/library/functions.html#input] string
can be parsed into a key and value that qualify for a
RecordValuedKeywordCard then that is the object created.
Otherwise, a standard Card object is created.

	Parameters:

		input : str

The string representing the card

	Returns:

		card :

either a RecordValuedKeywordCard or a Card object

	
classmethod fromstring(input)

	Create a card given the input [http://docs.python.org/library/functions.html#input] string. If the input [http://docs.python.org/library/functions.html#input] string
can be parsed into a key and value that qualify for a
RecordValuedKeywordCard then that is the object created.
Otherwise, a standard Card object is created.

	Parameters:

		input : str

The string representing the card

	Returns:

		card :

either a RecordValuedKeywordCard or a Card object

	
run_option(option='warn', err_text='', fix_text='Fixed.', fix=None, fixable=True)

	Execute the verification with selected option.

	
strvalue()

	Method to extract the field specifier and value from the card
image. This is what is reported to the user when requesting
the value of the Card using either an integer index or the
card key without any field specifier.

	
classmethod upperKey(*args, **kwargs)

	classmethod [http://docs.python.org/library/functions.html#classmethod] to convert a keyword value that may contain a
field-specifier to uppercase. The effect is to raise the
key to uppercase and leave the field specifier in its original
case.

	Parameters:

		key : int or str

A keyword value that could be an integer, a key, or a
key.field-specifier value

	Returns:

		Integer input :

the original integer key

String input :

the converted string

	
classmethod upper_key(key)

	classmethod [http://docs.python.org/library/functions.html#classmethod] to convert a keyword value that may contain a
field-specifier to uppercase. The effect is to raise the
key to uppercase and leave the field specifier in its original
case.

	Parameters:

		key : int or str

A keyword value that could be an integer, a key, or a
key.field-specifier value

	Returns:

		Integer input :

the original integer key

String input :

the converted string

	
classmethod validKeyValue(*args, **kwargs)

	Determine if the input key and value can be used to form a
valid RecordValuedKeywordCard object. The key parameter
may contain the key only or both the key and field-specifier.
The value may be the value only or the field-specifier and
the value together. The value parameter is optional, in
which case the key parameter must contain both the key and
the field specifier.

	Parameters:

		key : str

The key to parse

value : str or float-like, optional

The value to parse

	Returns:

		valid input : A list containing the key, field-specifier, value

invalid input : An empty list

Examples

>>> valid_key_value('DP1','AXIS.1: 2')
>>> valid_key_value('DP1.AXIS.1', 2)
>>> valid_key_value('DP1.AXIS.1')

	
classmethod valid_key_value(key, value=0)

	Determine if the input key and value can be used to form a
valid RecordValuedKeywordCard object. The key parameter
may contain the key only or both the key and field-specifier.
The value may be the value only or the field-specifier and
the value together. The value parameter is optional, in
which case the key parameter must contain both the key and
the field specifier.

	Parameters:

		key : str

The key to parse

value : str or float-like, optional

The value to parse

	Returns:

		valid input : A list containing the key, field-specifier, value

invalid input : An empty list

Examples

>>> valid_key_value('DP1','AXIS.1: 2')
>>> valid_key_value('DP1.AXIS.1', 2)
>>> valid_key_value('DP1.AXIS.1')

	
verify(option='warn')

	Verify all values in the instance.

	Parameters:

		option : str

Output verification option. Must be one of "fix",
"silentfix", "ignore", "warn", or
"exception". See Verification options for more info.

	
cardimage

	

	
comment

	Card comment

	
field = '[a-zA-Z_]\\w*(\\.\\d+)?'

	

	
field_specifier

	

	
field_specifier_NFSC_image_RE = <_sre.SRE_Pattern object at 0x54d46e0>

	

	
field_specifier_NFSC_val = '(?P<keyword>[a-zA-Z_]\\w*(\\.\\d+)?(\\.[a-zA-Z_]\\w*(\\.\\d+)?)*): (?P<val>[+-]? *(\\.\\d+|\\d+(\\.\\d*)?) *([deDE] *[+-]? *\\d+)?\\s*)'

	

	
field_specifier_NFSC_val_RE = <_sre.SRE_Pattern object at 0x54d4e40>

	

	
field_specifier_s = '[a-zA-Z_]\\w*(\\.\\d+)?(\\.[a-zA-Z_]\\w*(\\.\\d+)?)*'

	

	
field_specifier_val = '(?P<keyword>[a-zA-Z_]\\w*(\\.\\d+)?(\\.[a-zA-Z_]\\w*(\\.\\d+)?)*): (?P<val>[+-]?(\\.\\d+|\\d+(\\.\\d*)?)([DE][+-]?\\d+)?\\s*)'

	

	
identifier = '[a-zA-Z_]\\w*'

	

	
key

	Card keyword

	
keyword_NFSC_val = "\\'(?P<keyword>[a-zA-Z_]\\w*(\\.\\d+)?(\\.[a-zA-Z_]\\w*(\\.\\d+)?)*): (?P<val>[+-]? *(\\.\\d+|\\d+(\\.\\d*)?) *([deDE] *[+-]? *\\d+)?\\s*)\\'"

	

	
keyword_NFSC_val_comm = " +\\'(?P<keyword>[a-zA-Z_]\\w*(\\.\\d+)?(\\.[a-zA-Z_]\\w*(\\.\\d+)?)*): (?P<val>[+-]? *(\\.\\d+|\\d+(\\.\\d*)?) *([deDE] *[+-]? *\\d+)?\\s*)\\' *(/ *(?P<comm>[-~]*))?$"

	

	
keyword_NFSC_val_comm_RE = <_sre.SRE_Pattern object at 0x54d73d0>

	

	
keyword_name_RE = <_sre.SRE_Pattern object at 0x5014990>

	

	
keyword_val = "\\'(?P<keyword>[a-zA-Z_]\\w*(\\.\\d+)?(\\.[a-zA-Z_]\\w*(\\.\\d+)?)*): (?P<val>[+-]?(\\.\\d+|\\d+(\\.\\d*)?)([DE][+-]?\\d+)?\\s*)\\'"

	

	
keyword_val_comm = " +\\'(?P<keyword>[a-zA-Z_]\\w*(\\.\\d+)?(\\.[a-zA-Z_]\\w*(\\.\\d+)?)*): (?P<val>[+-]?(\\.\\d+|\\d+(\\.\\d*)?)([DE][+-]?\\d+)?\\s*)\\' *(/ *(?P<comm>[-~]*))?$"

	

	
keyword_val_comm_RE = <_sre.SRE_Pattern object at 0x54d4130>

	

	
length = 80

	

	
raw

	Return this card as a normal Card object not parsed as a record-valued
keyword card. Note that this returns a copy, so that modifications to
it do not update the original record-valued keyword card.

	
value

	Card value

Free functions

create_card

	
pyfits.create_card(key='', value='', comment='')

	Create a card given the input key, value, and comment.
If the input key and value qualify for a
RecordValuedKeywordCard then that is the object created.
Otherwise, a standard Card object is created.

	Parameters:

		key : str, optional

The key

value : str, optional

The value

comment : str, optional

The comment

	Returns:

		card :

Either a RecordValuedKeywordCard or a Card object.

create_card_from_string

	
pyfits.create_card_from_string(input)

	Create a card given the input [http://docs.python.org/library/functions.html#input] string. If the input [http://docs.python.org/library/functions.html#input] string
can be parsed into a key and value that qualify for a
RecordValuedKeywordCard then that is the object created.
Otherwise, a standard Card object is created.

	Parameters:

		input : str

The string representing the card

	Returns:

		card :

either a RecordValuedKeywordCard or a Card object

upper_key

	
pyfits.upper_key(key)

	classmethod [http://docs.python.org/library/functions.html#classmethod] to convert a keyword value that may contain a
field-specifier to uppercase. The effect is to raise the
key to uppercase and leave the field specifier in its original
case.

	Parameters:

		key : int or str

A keyword value that could be an integer, a key, or a
key.field-specifier value

	Returns:

		Integer input :

the original integer key

String input :

the converted string

 Copyright 2013, J. C. Hsu, Paul Barrett, Christopher Hanley, James Taylor, Michael Droettboom, Erik M. Bray.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyFITS 3.0.13.dev documentation

 	API Documentation

Tables

[image: Inheritance diagram of Column, ColDefs, FITS_record, FITS_rec, GroupData, TableHDU, BinTableHDU]

BinTableHDU

	
class pyfits.BinTableHDU(data=None, header=None, name=None)

	Bases: pyfits.hdu.table._TableBaseHDU

Binary table HDU class.

	Parameters:

		header : Header instance

header to be used

data : array

data to be used

name : str

name to be populated in EXTNAME keyword

	
add_checksum(when=None, override_datasum=False, blocking='standard')

	Add the CHECKSUM and DATASUM cards to this HDU with
the values set to the checksum calculated for the HDU and the
data respectively. The addition of the DATASUM card may
be overridden.

	Parameters:

		when : str, optional

comment string for the cards; by default the comments
will represent the time when the checksum was calculated

override_datasum : bool, optional

add the CHECKSUM card only

blocking: str, optional :

“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

Notes

For testing purposes, first call add_datasum with a when
argument, then call add_checksum with a when argument and
override_datasum set to True [http://docs.python.org/library/constants.html#True]. This will provide
consistent comments for both cards and enable the generation
of a CHECKSUM card with a consistent value.

	
add_datasum(when=None, blocking='standard')

	Add the DATASUM card to this HDU with the value set to the
checksum calculated for the data.

	Parameters:

		when : str, optional

Comment string for the card that by default represents the
time when the checksum was calculated

blocking: str, optional :

“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

	Returns:

		checksum : int

The calculated datasum

Notes

For testing purposes, provide a when argument to enable the
comment value in the card to remain consistent. This will
enable the generation of a CHECKSUM card with a consistent
value.

	
copy()

	Make a copy of the table HDU, both header and data are copied.

	
filebytes()

	Calculates and returns the number of bytes that this HDU will write to
a file.

	Parameters:

		None :

	Returns:

		Number of bytes :

	
fileinfo()

	Returns a dictionary detailing information about the locations
of this HDU within any associated file. The values are only
valid after a read or write of the associated file with no
intervening changes to the HDUList.

	Parameters:

		None :

	Returns:

		dictionary or None :

The dictionary details information about the locations of
this HDU within an associated file. Returns None [http://docs.python.org/library/constants.html#None] when
the HDU is not associated with a file.

Dictionary contents:

	Key
	Value

	file
	File object associated with the HDU

	filemode
	Mode in which the file was opened (readonly, copyonwrite,
update, append, ostream)

	hdrLoc
	Starting byte location of header in file

	datLoc
	Starting byte location of data block in file

	datSpan
	Data size including padding

	
classmethod fromstring(data, fileobj=None, offset=0, checksum=False, ignore_missing_end=False, **kwargs)

	Creates a new HDU object of the appropriate type from a string
containing the HDU’s entire header and, optionally, its data.

	Parameters:

		data : str

A byte string contining the HDU’s header and, optionally, its data.
If fileobj is not specified, and the length of data extends
beyond the header, then the trailing data is taken to be the HDU’s
data. If fileobj is specified then the trailing data is ignored.

fileobj : file, optional

The file-like object that this HDU was read from.

offset : int, optional

If fileobj is specified, the offset into the file-like object at
which this HDU begins.

checksum : bool optional

Check the HDU’s checksum and/or datasum.

ignore_missing_end : bool, optional

Ignore a missing end card in the header data. Note that without
the end card the end of the header can’t be found, so the entire
data is just assumed to be the header.

kwargs : optional

May contain additional keyword arguments specific to an HDU type.
Any unrecognized kwargs are simply ignored.

	
get_coldefs(*args, **kwargs)

	[Deprecated] Returns the table’s column definitions.

	
classmethod match_header(header)

	

	
classmethod readfrom(fileobj, checksum=False, ignore_missing_end=False, **kwargs)

	Read the HDU from a file. Normally an HDU should be opened with
fitsopen() which reads the entire HDU list in a FITS file. But this
method is still provided for symmetry with writeto().

	Parameters:

		fileobj : file object or file-like object

Input FITS file. The file’s seek pointer is assumed to be at the
beginning of the HDU.

checksum : bool

If True [http://docs.python.org/library/constants.html#True], verifies that both DATASUM and
CHECKSUM card values (when present in the HDU header)
match the header and data of all HDU’s in the file.

ignore_missing_end : bool

Do not issue an exception when opening a file that is
missing an END card in the last header.

	
classmethod register_hdu(hducls)

	

	
req_cards(keyword, pos, test, fix_value, option, errlist)

	Check the existence, location, and value of a required Card.

TODO: Write about parameters

If pos = None [http://docs.python.org/library/constants.html#None], it can be anywhere. If the card does not exist,
the new card will have the fix_value as its value when created.
Also check the card’s value by using the test [http://docs.python.org/library/test.html#module-test] argument.

	
run_option(option='warn', err_text='', fix_text='Fixed.', fix=None, fixable=True)

	Execute the verification with selected option.

	
size()

	Size (in bytes) of the data portion of the HDU.

	
classmethod tcreate(datafile, cdfile=None, hfile=None, replace=False)

	Create a table from the input ASCII files. The input is from up to
three separate files, one containing column definitions, one containing
header parameters, and one containing column data. The column
definition and header parameters files are not required. When absent
the column definitions and/or header parameters are taken from the
current values in this HDU.

	Parameters:

		datafile : file path, file object or file-like object

Input data file containing the table data in ASCII format.

cdfile : file path, file object, file-like object, optional

Input column definition file containing the names,
formats, display formats, physical units, multidimensional
array dimensions, undefined values, scale factors, and
offsets associated with the columns in the table. If
None [http://docs.python.org/library/constants.html#None], the column definitions are taken from the current
values in this object.

hfile : file path, file object, file-like object, optional

Input parameter definition file containing the header
parameter definitions to be associated with the table. If
None [http://docs.python.org/library/constants.html#None], the header parameter definitions are taken from
the current values in this objects header.

replace : bool

When True [http://docs.python.org/library/constants.html#True], indicates that the entire header should be
replaced with the contents of the ASCII file instead of
just updating the current header.

Notes

The primary use for the tcreate method is to allow the input
of ASCII data that was edited in a standard text editor of the
table data and parameters. The tdump method can be used to
create the initial ASCII files.

	datafile: Each line of the data file represents one row of table
data. The data is output one column at a time in column order. If
a column contains an array, each element of the column array in the
current row is output before moving on to the next column. Each row
ends with a new line.

Integer data is output right-justified in a 21-character field
followed by a blank. Floating point data is output right justified
using ‘g’ format in a 21-character field with 15 digits of
precision, followed by a blank. String data that does not contain
whitespace is output left-justified in a field whose width matches
the width specified in the TFORM header parameter for the
column, followed by a blank. When the string data contains
whitespace characters, the string is enclosed in quotation marks
(""). For the last data element in a row, the trailing blank in
the field is replaced by a new line character.

For column data containing variable length arrays (‘P’ format), the
array data is preceded by the string 'VLA_Length= ' and the
integer length of the array for that row, left-justified in a
21-character field, followed by a blank.

For column data representing a bit field (‘X’ format), each bit
value in the field is output right-justified in a 21-character field
as 1 (for true) or 0 (for false).

	cdfile: Each line of the column definitions file provides the
definitions for one column in the table. The line is broken up into
8, sixteen-character fields. The first field provides the column
name (TTYPEn). The second field provides the column format
(TFORMn). The third field provides the display format
(TDISPn). The fourth field provides the physical units
(TUNITn). The fifth field provides the dimensions for a
multidimensional array (TDIMn). The sixth field provides the
value that signifies an undefined value (TNULLn). The seventh
field provides the scale factor (TSCALn). The eighth field
provides the offset value (TZEROn). A field value of "" is
used to represent the case where no value is provided.

	hfile: Each line of the header parameters file provides the
definition of a single HDU header card as represented by the card
image.

	
tdump(datafile=None, cdfile=None, hfile=None, clobber=False)

	Dump the table HDU to a file in ASCII format. The table may be dumped
in three separate files, one containing column definitions, one
containing header parameters, and one for table data.

	Parameters:

		datafile : file path, file object or file-like object, optional

Output data file. The default is the root name of the
fits file associated with this HDU appended with the
extension .txt.

cdfile : file path, file object or file-like object, optional

Output column definitions file. The default is None [http://docs.python.org/library/constants.html#None], no
column definitions output is produced.

hfile : file path, file object or file-like object, optional

Output header parameters file. The default is None [http://docs.python.org/library/constants.html#None],
no header parameters output is produced.

clobber : bool

Overwrite the output files if they exist.

Notes

The primary use for the tdump method is to allow editing in a
standard text editor of the table data and parameters. The
tcreate method can be used to reassemble the table from the
three ASCII files.

	datafile: Each line of the data file represents one row of table
data. The data is output one column at a time in column order. If
a column contains an array, each element of the column array in the
current row is output before moving on to the next column. Each row
ends with a new line.

Integer data is output right-justified in a 21-character field
followed by a blank. Floating point data is output right justified
using ‘g’ format in a 21-character field with 15 digits of
precision, followed by a blank. String data that does not contain
whitespace is output left-justified in a field whose width matches
the width specified in the TFORM header parameter for the
column, followed by a blank. When the string data contains
whitespace characters, the string is enclosed in quotation marks
(""). For the last data element in a row, the trailing blank in
the field is replaced by a new line character.

For column data containing variable length arrays (‘P’ format), the
array data is preceded by the string 'VLA_Length= ' and the
integer length of the array for that row, left-justified in a
21-character field, followed by a blank.

For column data representing a bit field (‘X’ format), each bit
value in the field is output right-justified in a 21-character field
as 1 (for true) or 0 (for false).

	cdfile: Each line of the column definitions file provides the
definitions for one column in the table. The line is broken up into
8, sixteen-character fields. The first field provides the column
name (TTYPEn). The second field provides the column format
(TFORMn). The third field provides the display format
(TDISPn). The fourth field provides the physical units
(TUNITn). The fifth field provides the dimensions for a
multidimensional array (TDIMn). The sixth field provides the
value that signifies an undefined value (TNULLn). The seventh
field provides the scale factor (TSCALn). The eighth field
provides the offset value (TZEROn). A field value of "" is
used to represent the case where no value is provided.

	hfile: Each line of the header parameters file provides the
definition of a single HDU header card as represented by the card
image.

	
classmethod unregister_hdu(hducls)

	

	
update()

	Update header keywords to reflect recent changes of columns.

	
update_ext_name(value, comment=None, before=None, after=None, savecomment=False)

	Update the extension name associated with the HDU.

If the keyword already exists in the Header, it’s value and/or comment
will be updated. If it does not exist, a new card will be created
and it will be placed before or after the specified location.
If no before or after is specified, it will be appended at
the end.

	Parameters:

		value : str

value to be used for the new extension name

comment : str, optional

to be used for updating, default=None.

before : str or int, optional

name of the keyword, or index of the Card before which
the new card will be placed in the Header. The argument
before takes precedence over after if both specified.

after : str or int, optional

name of the keyword, or index of the Card after which
the new card will be placed in the Header.

savecomment : bool, optional

When True [http://docs.python.org/library/constants.html#True], preserve the current comment for an existing
keyword. The argument savecomment takes precedence over
comment if both specified. If comment is not
specified then the current comment will automatically be
preserved.

	
update_ext_version(value, comment=None, before=None, after=None, savecomment=False)

	Update the extension version associated with the HDU.

If the keyword already exists in the Header, it’s value and/or comment
will be updated. If it does not exist, a new card will be created
and it will be placed before or after the specified location.
If no before or after is specified, it will be appended at
the end.

	Parameters:

		value : str

value to be used for the new extension version

comment : str, optional

to be used for updating, default=None.

before : str or int, optional

name of the keyword, or index of the Card before which
the new card will be placed in the Header. The argument
before takes precedence over after if both specified.

after : str or int, optional

name of the keyword, or index of the Card after which
the new card will be placed in the Header.

savecomment : bool, optional

When True [http://docs.python.org/library/constants.html#True], preserve the current comment for an existing
keyword. The argument savecomment takes precedence over
comment if both specified. If comment is not
specified then the current comment will automatically be
preserved.

	
verify(option='warn')

	Verify all values in the instance.

	Parameters:

		option : str

Output verification option. Must be one of "fix",
"silentfix", "ignore", "warn", or
"exception". See Verification options for more info.

	
verify_checksum(blocking='standard')

	Verify that the value in the CHECKSUM keyword matches the
value calculated for the current HDU CHECKSUM.

	blocking: str, optional

	“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

	Returns:

		valid : int

	0 - failure

	1 - success

	2 - no CHECKSUM keyword present

	
verify_datasum(blocking='standard')

	Verify that the value in the DATASUM keyword matches the value
calculated for the DATASUM of the current HDU data.

	blocking: str, optional

	“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

	Returns:

		valid : int

	0 - failure

	1 - success

	2 - no DATASUM keyword present

	
writeto(*args, **kwargs)

	Works similarly to the normal writeto(), but prepends a default
PrimaryHDU are required by extension HDUs (which cannot stand on
their own).

	
columns

	Works similarly to property(), but computes the value only once.

Adapted from the recipe at
http://code.activestate.com/recipes/363602-lazy-property-evaluation

	
data

	Works similarly to property(), but computes the value only once.

Adapted from the recipe at
http://code.activestate.com/recipes/363602-lazy-property-evaluation

	
header

	

	
name

	

	
tdump_file_format = '\n\n- **datafile:** Each line of the data file represents one row of table\n data. The data is output one column at a time in column order. If\n a column contains an array, each element of the column array in the\n current row is output before moving on to the next column. Each row\n ends with a new line.\n\n Integer data is output right-justified in a 21-character field\n followed by a blank. Floating point data is output right justified\n using \'g\' format in a 21-character field with 15 digits of\n precision, followed by a blank. String data that does not contain\n whitespace is output left-justified in a field whose width matches\n the width specified in the ``TFORM`` header parameter for the\n column, followed by a blank. When the string data contains\n whitespace characters, the string is enclosed in quotation marks\n (``""``). For the last data element in a row, the trailing blank in\n the field is replaced by a new line character.\n\n For column data containing variable length arrays (\'P\' format), the\n array data is preceded by the string ``\'VLA_Length= \'`` and the\n integer length of the array for that row, left-justified in a\n 21-character field, followed by a blank.\n\n For column data representing a bit field (\'X\' format), each bit\n value in the field is output right-justified in a 21-character field\n as 1 (for true) or 0 (for false).\n\n- **cdfile:** Each line of the column definitions file provides the\n definitions for one column in the table. The line is broken up into\n 8, sixteen-character fields. The first field provides the column\n name (``TTYPEn``). The second field provides the column format\n (``TFORMn``). The third field provides the display format\n (``TDISPn``). The fourth field provides the physical units\n (``TUNITn``). The fifth field provides the dimensions for a\n multidimensional array (``TDIMn``). The sixth field provides the\n value that signifies an undefined value (``TNULLn``). The seventh\n field provides the scale factor (``TSCALn``). The eighth field\n provides the offset value (``TZEROn``). A field value of ``""`` is\n used to represent the case where no value is provided.\n\n- **hfile:** Each line of the header parameters file provides the\n definition of a single HDU header card as represented by the card\n image.\n'

	

TableHDU

	
class pyfits.TableHDU(data=None, header=None, name=None)

	Bases: pyfits.hdu.table._TableBaseHDU

FITS ASCII table extension HDU class.

	
add_checksum(when=None, override_datasum=False, blocking='standard')

	Add the CHECKSUM and DATASUM cards to this HDU with
the values set to the checksum calculated for the HDU and the
data respectively. The addition of the DATASUM card may
be overridden.

	Parameters:

		when : str, optional

comment string for the cards; by default the comments
will represent the time when the checksum was calculated

override_datasum : bool, optional

add the CHECKSUM card only

blocking: str, optional :

“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

Notes

For testing purposes, first call add_datasum with a when
argument, then call add_checksum with a when argument and
override_datasum set to True [http://docs.python.org/library/constants.html#True]. This will provide
consistent comments for both cards and enable the generation
of a CHECKSUM card with a consistent value.

	
add_datasum(when=None, blocking='standard')

	Add the DATASUM card to this HDU with the value set to the
checksum calculated for the data.

	Parameters:

		when : str, optional

Comment string for the card that by default represents the
time when the checksum was calculated

blocking: str, optional :

“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

	Returns:

		checksum : int

The calculated datasum

Notes

For testing purposes, provide a when argument to enable the
comment value in the card to remain consistent. This will
enable the generation of a CHECKSUM card with a consistent
value.

	
copy()

	Make a copy of the table HDU, both header and data are copied.

	
filebytes()

	Calculates and returns the number of bytes that this HDU will write to
a file.

	Parameters:

		None :

	Returns:

		Number of bytes :

	
fileinfo()

	Returns a dictionary detailing information about the locations
of this HDU within any associated file. The values are only
valid after a read or write of the associated file with no
intervening changes to the HDUList.

	Parameters:

		None :

	Returns:

		dictionary or None :

The dictionary details information about the locations of
this HDU within an associated file. Returns None [http://docs.python.org/library/constants.html#None] when
the HDU is not associated with a file.

Dictionary contents:

	Key
	Value

	file
	File object associated with the HDU

	filemode
	Mode in which the file was opened (readonly, copyonwrite,
update, append, ostream)

	hdrLoc
	Starting byte location of header in file

	datLoc
	Starting byte location of data block in file

	datSpan
	Data size including padding

	
classmethod fromstring(data, fileobj=None, offset=0, checksum=False, ignore_missing_end=False, **kwargs)

	Creates a new HDU object of the appropriate type from a string
containing the HDU’s entire header and, optionally, its data.

	Parameters:

		data : str

A byte string contining the HDU’s header and, optionally, its data.
If fileobj is not specified, and the length of data extends
beyond the header, then the trailing data is taken to be the HDU’s
data. If fileobj is specified then the trailing data is ignored.

fileobj : file, optional

The file-like object that this HDU was read from.

offset : int, optional

If fileobj is specified, the offset into the file-like object at
which this HDU begins.

checksum : bool optional

Check the HDU’s checksum and/or datasum.

ignore_missing_end : bool, optional

Ignore a missing end card in the header data. Note that without
the end card the end of the header can’t be found, so the entire
data is just assumed to be the header.

kwargs : optional

May contain additional keyword arguments specific to an HDU type.
Any unrecognized kwargs are simply ignored.

	
get_coldefs(*args, **kwargs)

	[Deprecated] Returns the table’s column definitions.

	
classmethod match_header(header)

	

	
classmethod readfrom(fileobj, checksum=False, ignore_missing_end=False, **kwargs)

	Read the HDU from a file. Normally an HDU should be opened with
fitsopen() which reads the entire HDU list in a FITS file. But this
method is still provided for symmetry with writeto().

	Parameters:

		fileobj : file object or file-like object

Input FITS file. The file’s seek pointer is assumed to be at the
beginning of the HDU.

checksum : bool

If True [http://docs.python.org/library/constants.html#True], verifies that both DATASUM and
CHECKSUM card values (when present in the HDU header)
match the header and data of all HDU’s in the file.

ignore_missing_end : bool

Do not issue an exception when opening a file that is
missing an END card in the last header.

	
classmethod register_hdu(hducls)

	

	
req_cards(keyword, pos, test, fix_value, option, errlist)

	Check the existence, location, and value of a required Card.

TODO: Write about parameters

If pos = None [http://docs.python.org/library/constants.html#None], it can be anywhere. If the card does not exist,
the new card will have the fix_value as its value when created.
Also check the card’s value by using the test [http://docs.python.org/library/test.html#module-test] argument.

	
run_option(option='warn', err_text='', fix_text='Fixed.', fix=None, fixable=True)

	Execute the verification with selected option.

	
size()

	Size (in bytes) of the data portion of the HDU.

	
classmethod unregister_hdu(hducls)

	

	
update()

	Update header keywords to reflect recent changes of columns.

	
update_ext_name(value, comment=None, before=None, after=None, savecomment=False)

	Update the extension name associated with the HDU.

If the keyword already exists in the Header, it’s value and/or comment
will be updated. If it does not exist, a new card will be created
and it will be placed before or after the specified location.
If no before or after is specified, it will be appended at
the end.

	Parameters:

		value : str

value to be used for the new extension name

comment : str, optional

to be used for updating, default=None.

before : str or int, optional

name of the keyword, or index of the Card before which
the new card will be placed in the Header. The argument
before takes precedence over after if both specified.

after : str or int, optional

name of the keyword, or index of the Card after which
the new card will be placed in the Header.

savecomment : bool, optional

When True [http://docs.python.org/library/constants.html#True], preserve the current comment for an existing
keyword. The argument savecomment takes precedence over
comment if both specified. If comment is not
specified then the current comment will automatically be
preserved.

	
update_ext_version(value, comment=None, before=None, after=None, savecomment=False)

	Update the extension version associated with the HDU.

If the keyword already exists in the Header, it’s value and/or comment
will be updated. If it does not exist, a new card will be created
and it will be placed before or after the specified location.
If no before or after is specified, it will be appended at
the end.

	Parameters:

		value : str

value to be used for the new extension version

comment : str, optional

to be used for updating, default=None.

before : str or int, optional

name of the keyword, or index of the Card before which
the new card will be placed in the Header. The argument
before takes precedence over after if both specified.

after : str or int, optional

name of the keyword, or index of the Card after which
the new card will be placed in the Header.

savecomment : bool, optional

When True [http://docs.python.org/library/constants.html#True], preserve the current comment for an existing
keyword. The argument savecomment takes precedence over
comment if both specified. If comment is not
specified then the current comment will automatically be
preserved.

	
verify(option='warn')

	Verify all values in the instance.

	Parameters:

		option : str

Output verification option. Must be one of "fix",
"silentfix", "ignore", "warn", or
"exception". See Verification options for more info.

	
verify_checksum(blocking='standard')

	Verify that the value in the CHECKSUM keyword matches the
value calculated for the current HDU CHECKSUM.

	blocking: str, optional

	“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

	Returns:

		valid : int

	0 - failure

	1 - success

	2 - no CHECKSUM keyword present

	
verify_datasum(blocking='standard')

	Verify that the value in the DATASUM keyword matches the value
calculated for the DATASUM of the current HDU data.

	blocking: str, optional

	“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

	Returns:

		valid : int

	0 - failure

	1 - success

	2 - no DATASUM keyword present

	
writeto(*args, **kwargs)

	Works similarly to the normal writeto(), but prepends a default
PrimaryHDU are required by extension HDUs (which cannot stand on
their own).

	
columns

	Works similarly to property(), but computes the value only once.

Adapted from the recipe at
http://code.activestate.com/recipes/363602-lazy-property-evaluation

	
data

	Works similarly to property(), but computes the value only once.

Adapted from the recipe at
http://code.activestate.com/recipes/363602-lazy-property-evaluation

	
header

	

	
name

	

Column

	
class pyfits.Column(name=None, format=None, unit=None, null=None, bscale=None, bzero=None, disp=None, start=None, dim=None, array=None)

	Bases: object

Class which contains the definition of one column, e.g. ttype,
tform, etc. and the array containing values for the column.
Does not support theap yet.

Construct a Column by specifying attributes. All attributes
except format [http://docs.python.org/library/functions.html#format] can be optional.

	Parameters:

		name : str, optional

column name, corresponding to TTYPE keyword

format : str, optional

column format, corresponding to TFORM keyword

unit : str, optional

column unit, corresponding to TUNIT keyword

null : str, optional

null value, corresponding to TNULL keyword

bscale : int-like, optional

bscale value, corresponding to TSCAL keyword

bzero : int-like, optional

bzero value, corresponding to TZERO keyword

disp : str, optional

display format, corresponding to TDISP keyword

start : int, optional

column starting position (ASCII table only), corresponding
to TBCOL keyword

dim : str, optional

column dimension corresponding to TDIM keyword

	
copy()

	Return a copy of this Column.

ColDefs

	
class pyfits.ColDefs(input, tbtype='BinTableHDU')

	Bases: object

Column definitions class.

It has attributes corresponding to the Column attributes
(e.g. ColDefs has the attribute names while Column
has name). Each attribute in ColDefs is a list of
corresponding attribute values from all Column objects.

	Parameters:

		input : :

An existing table HDU, an existing ColDefs, or recarray

(Deprecated) tbtype : str, optional

which table HDU, "BinTableHDU" (default) or
"TableHDU" (text table).
Now ColDefs for a normal (binary) table by default, but converted
automatically to ASCII table ColDefs in the appropriate contexts
(namely, when creating an ASCII table).

	
add_col(column)

	Append one Column to the column definition.

Warning

New in pyfits 2.3: This function appends the new column
to the ColDefs object in place. Prior to pyfits 2.3,
this function returned a new ColDefs with the new column
at the end.

	
change_attrib(col_name, attrib, new_value)

	Change an attribute (in the commonName list) of a Column.

	col_name : str or int

	The column name or index to change

	attrib : str

	The attribute name

	value : object

	The new value for the attribute

	
change_name(col_name, new_name)

	Change a Column‘s name.

	col_name : str

	The current name of the column

	new_name : str

	The new name of the column

	
change_unit(col_name, new_unit)

	Change a Column‘s unit.

	col_name : str or int

	The column name or index

	new_unit : str

	The new unit for the column

	
del_col(col_name)

	Delete (the definition of) one Column.

	col_name : str or int

	The column’s name or index

	
info(attrib='all', output=None)

	Get attribute(s) information of the column definition.

	Parameters:

		attrib : str

Can be one or more of the attributes listed in
KEYWORD_ATTRIBUTES. The default is "all" which will print
out all attributes. It forgives plurals and blanks. If
there are two or more attribute names, they must be
separated by comma(s).

output : file, optional

File-like object to output to. Outputs to stdout by default.
If False, returns the attributes as a dict instead.

Notes

This function doesn’t return anything by default; it just prints to
stdout.

	
data

	What was originally self.columns is now self.data; this provides some
backwards compatibility.

FITS_record

	
class pyfits.FITS_record(input, row=0, start=None, end=None, step=None, base=None, **kwargs)

	Bases: object

FITS record class.

FITS_record is used to access records of the FITS_rec object.
This will allow us to deal with scaled columns. It also handles
conversion/scaling of columns in ASCII tables. The FITS_record
class expects a FITS_rec object as input.

	Parameters:

		input : array

The array to wrap.

row : int, optional

The starting logical row of the array.

start : int, optional

The starting column in the row associated with this object.
Used for subsetting the columns of the FITS_rec object.

end : int, optional

The ending column in the row associated with this object.
Used for subsetting the columns of the FITS_rec object.

	
field(field)

	Get the field data of the record.

	
setfield(field, value)

	Set the field data of the record.

FITS_rec

	
class pyfits.FITS_rec

	Bases: numpy.core.records.recarray

FITS record array class.

FITS_rec is the data part of a table HDU’s data part. This is a
layer over the recarray, so we can deal with scaled columns.

It inherits all of the standard methods from numpy.ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray].

x.__init__(...) initializes x; see help(type(x)) for signature

	
field(key)

	A view of a Column‘s data as an array.

	
columns

	A user-visible accessor for the coldefs. See ticket #44.

GroupData

	
class pyfits.GroupData

	Bases: pyfits.fitsrec.FITS_rec

Random groups data object.

Allows structured access to FITS Group data in a manner analogous
to tables.

x.__init__(...) initializes x; see help(type(x)) for signature

	
par(parname)

	Get the group parameter values.

	
data

	

Free functions

new_table

	
pyfits.new_table(input, header=None, nrows=0, fill=False, tbtype='BinTableHDU')

	Create a new table from the input column definitions.

Warning: Creating a new table using this method creates an in-memory copy
of all the column arrays in the input. This is because if they are
separate arrays they must be combined into a single contiguous array.

If the column data is already in a single contiguous array (such as an
existing record array) it may be better to create a BinTableHDU instance
directly. See the PyFITS documentation for more details.

	Parameters:

		input : sequence of Column or ColDefs objects

The data to create a table from.

header : Header instance

Header to be used to populate the non-required keywords.

nrows : int

Number of rows in the new table.

fill : bool

If True [http://docs.python.org/library/constants.html#True], will fill all cells with zeros or blanks. If
False [http://docs.python.org/library/constants.html#False], copy the data from input, undefined cells will still
be filled with zeros/blanks.

tbtype : str

Table type to be created (“BinTableHDU” or “TableHDU”).

tdump

	
pyfits.tdump(filename, datafile=None, cdfile=None, hfile=None, ext=1, clobber=False)

	Dump a table HDU to a file in ASCII format. The table may be
dumped in three separate files, one containing column definitions,
one containing header parameters, and one for table data.

	Parameters:

		filename : file path, file object or file-like object

Input fits file.

datafile : file path, file object or file-like object (optional)

Output data file. The default is the root name of the input
fits file appended with an underscore, followed by the
extension number (ext), followed by the extension .txt.

cdfile : file path, file object or file-like object (optional)

Output column definitions file. The default is None [http://docs.python.org/library/constants.html#None],
no column definitions output is produced.

hfile : file path, file object or file-like object (optional)

Output header parameters file. The default is None [http://docs.python.org/library/constants.html#None],
no header parameters output is produced.

ext : int

The number of the extension containing the table HDU to be
dumped.

clobber : bool

Overwrite the output files if they exist.

Notes

The primary use for the tdump function is to allow editing in a
standard text editor of the table data and parameters. The
tcreate function can be used to reassemble the table from the
three ASCII files.

	datafile: Each line of the data file represents one row of table
data. The data is output one column at a time in column order. If
a column contains an array, each element of the column array in the
current row is output before moving on to the next column. Each row
ends with a new line.

Integer data is output right-justified in a 21-character field
followed by a blank. Floating point data is output right justified
using ‘g’ format in a 21-character field with 15 digits of
precision, followed by a blank. String data that does not contain
whitespace is output left-justified in a field whose width matches
the width specified in the TFORM header parameter for the
column, followed by a blank. When the string data contains
whitespace characters, the string is enclosed in quotation marks
(""). For the last data element in a row, the trailing blank in
the field is replaced by a new line character.

For column data containing variable length arrays (‘P’ format), the
array data is preceded by the string 'VLA_Length= ' and the
integer length of the array for that row, left-justified in a
21-character field, followed by a blank.

For column data representing a bit field (‘X’ format), each bit
value in the field is output right-justified in a 21-character field
as 1 (for true) or 0 (for false).

	cdfile: Each line of the column definitions file provides the
definitions for one column in the table. The line is broken up into
8, sixteen-character fields. The first field provides the column
name (TTYPEn). The second field provides the column format
(TFORMn). The third field provides the display format
(TDISPn). The fourth field provides the physical units
(TUNITn). The fifth field provides the dimensions for a
multidimensional array (TDIMn). The sixth field provides the
value that signifies an undefined value (TNULLn). The seventh
field provides the scale factor (TSCALn). The eighth field
provides the offset value (TZEROn). A field value of "" is
used to represent the case where no value is provided.

	hfile: Each line of the header parameters file provides the
definition of a single HDU header card as represented by the card
image.

tcreate

	
pyfits.tcreate(datafile, cdfile, hfile=None)

	Create a table from the input ASCII files. The input is from up
to three separate files, one containing column definitions, one
containing header parameters, and one containing column data. The
header parameters file is not required. When the header
parameters file is absent a minimal header is constructed.

	Parameters:

		datafile : file path, file object or file-like object

Input data file containing the table data in ASCII format.

cdfile : file path, file object or file-like object

Input column definition file containing the names, formats,
display formats, physical units, multidimensional array
dimensions, undefined values, scale factors, and offsets
associated with the columns in the table.

hfile : file path, file object or file-like object (optional)

Input parameter definition file containing the header
parameter definitions to be associated with the table.
If None [http://docs.python.org/library/constants.html#None], a minimal header is constructed.

Notes

The primary use for the tcreate function is to allow the input of
ASCII data that was edited in a standard text editor of the table
data and parameters. The tdump function can be used to create the
initial ASCII files.

	datafile: Each line of the data file represents one row of table
data. The data is output one column at a time in column order. If
a column contains an array, each element of the column array in the
current row is output before moving on to the next column. Each row
ends with a new line.

Integer data is output right-justified in a 21-character field
followed by a blank. Floating point data is output right justified
using ‘g’ format in a 21-character field with 15 digits of
precision, followed by a blank. String data that does not contain
whitespace is output left-justified in a field whose width matches
the width specified in the TFORM header parameter for the
column, followed by a blank. When the string data contains
whitespace characters, the string is enclosed in quotation marks
(""). For the last data element in a row, the trailing blank in
the field is replaced by a new line character.

For column data containing variable length arrays (‘P’ format), the
array data is preceded by the string 'VLA_Length= ' and the
integer length of the array for that row, left-justified in a
21-character field, followed by a blank.

For column data representing a bit field (‘X’ format), each bit
value in the field is output right-justified in a 21-character field
as 1 (for true) or 0 (for false).

	cdfile: Each line of the column definitions file provides the
definitions for one column in the table. The line is broken up into
8, sixteen-character fields. The first field provides the column
name (TTYPEn). The second field provides the column format
(TFORMn). The third field provides the display format
(TDISPn). The fourth field provides the physical units
(TUNITn). The fifth field provides the dimensions for a
multidimensional array (TDIMn). The sixth field provides the
value that signifies an undefined value (TNULLn). The seventh
field provides the scale factor (TSCALn). The eighth field
provides the offset value (TZEROn). A field value of "" is
used to represent the case where no value is provided.

	hfile: Each line of the header parameters file provides the
definition of a single HDU header card as represented by the card
image.

 Copyright 2013, J. C. Hsu, Paul Barrett, Christopher Hanley, James Taylor, Michael Droettboom, Erik M. Bray.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyFITS 3.0.13.dev documentation

 	API Documentation

Images

[image: Inheritance diagram of Section, ImageHDU]

ImageHDU

	
class pyfits.ImageHDU(data=None, header=None, name=None, do_not_scale_image_data=False, uint=False)

	Bases: pyfits.hdu.image._ImageBaseHDU, pyfits.hdu.base.ExtensionHDU

FITS image extension HDU class.

Construct an image HDU.

	Parameters:

		data : array

The data in the HDU.

header : Header instance

The header to be used (as a template). If header is
None [http://docs.python.org/library/constants.html#None], a minimal header will be provided.

name : str, optional

The name of the HDU, will be the value of the keyword
EXTNAME.

do_not_scale_image_data : bool, optional

If True [http://docs.python.org/library/constants.html#True], image data is not scaled using BSCALE/BZERO values
when read.

uint : bool, optional

Interpret signed integer data where BZERO is the
central value and BSCALE == 1 as unsigned integer
data. For example, int16 data with BZERO = 32768
and BSCALE = 1 would be treated as uint16 data.

	
add_checksum(when=None, override_datasum=False, blocking='standard')

	Add the CHECKSUM and DATASUM cards to this HDU with
the values set to the checksum calculated for the HDU and the
data respectively. The addition of the DATASUM card may
be overridden.

	Parameters:

		when : str, optional

comment string for the cards; by default the comments
will represent the time when the checksum was calculated

override_datasum : bool, optional

add the CHECKSUM card only

blocking: str, optional :

“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

Notes

For testing purposes, first call add_datasum with a when
argument, then call add_checksum with a when argument and
override_datasum set to True [http://docs.python.org/library/constants.html#True]. This will provide
consistent comments for both cards and enable the generation
of a CHECKSUM card with a consistent value.

	
add_datasum(when=None, blocking='standard')

	Add the DATASUM card to this HDU with the value set to the
checksum calculated for the data.

	Parameters:

		when : str, optional

Comment string for the card that by default represents the
time when the checksum was calculated

blocking: str, optional :

“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

	Returns:

		checksum : int

The calculated datasum

Notes

For testing purposes, provide a when argument to enable the
comment value in the card to remain consistent. This will
enable the generation of a CHECKSUM card with a consistent
value.

	
copy()

	Make a copy of the HDU, both header and data are copied.

	
filebytes()

	Calculates and returns the number of bytes that this HDU will write to
a file.

	Parameters:

		None :

	Returns:

		Number of bytes :

	
fileinfo()

	Returns a dictionary detailing information about the locations
of this HDU within any associated file. The values are only
valid after a read or write of the associated file with no
intervening changes to the HDUList.

	Parameters:

		None :

	Returns:

		dictionary or None :

The dictionary details information about the locations of
this HDU within an associated file. Returns None [http://docs.python.org/library/constants.html#None] when
the HDU is not associated with a file.

Dictionary contents:

	Key
	Value

	file
	File object associated with the HDU

	filemode
	Mode in which the file was opened (readonly, copyonwrite,
update, append, ostream)

	hdrLoc
	Starting byte location of header in file

	datLoc
	Starting byte location of data block in file

	datSpan
	Data size including padding

	
classmethod fromstring(data, fileobj=None, offset=0, checksum=False, ignore_missing_end=False, **kwargs)

	Creates a new HDU object of the appropriate type from a string
containing the HDU’s entire header and, optionally, its data.

	Parameters:

		data : str

A byte string contining the HDU’s header and, optionally, its data.
If fileobj is not specified, and the length of data extends
beyond the header, then the trailing data is taken to be the HDU’s
data. If fileobj is specified then the trailing data is ignored.

fileobj : file, optional

The file-like object that this HDU was read from.

offset : int, optional

If fileobj is specified, the offset into the file-like object at
which this HDU begins.

checksum : bool optional

Check the HDU’s checksum and/or datasum.

ignore_missing_end : bool, optional

Ignore a missing end card in the header data. Note that without
the end card the end of the header can’t be found, so the entire
data is just assumed to be the header.

kwargs : optional

May contain additional keyword arguments specific to an HDU type.
Any unrecognized kwargs are simply ignored.

	
classmethod match_header(header)

	

	
classmethod readfrom(fileobj, checksum=False, ignore_missing_end=False, **kwargs)

	Read the HDU from a file. Normally an HDU should be opened with
fitsopen() which reads the entire HDU list in a FITS file. But this
method is still provided for symmetry with writeto().

	Parameters:

		fileobj : file object or file-like object

Input FITS file. The file’s seek pointer is assumed to be at the
beginning of the HDU.

checksum : bool

If True [http://docs.python.org/library/constants.html#True], verifies that both DATASUM and
CHECKSUM card values (when present in the HDU header)
match the header and data of all HDU’s in the file.

ignore_missing_end : bool

Do not issue an exception when opening a file that is
missing an END card in the last header.

	
classmethod register_hdu(hducls)

	

	
req_cards(keyword, pos, test, fix_value, option, errlist)

	Check the existence, location, and value of a required Card.

TODO: Write about parameters

If pos = None [http://docs.python.org/library/constants.html#None], it can be anywhere. If the card does not exist,
the new card will have the fix_value as its value when created.
Also check the card’s value by using the test [http://docs.python.org/library/test.html#module-test] argument.

	
run_option(option='warn', err_text='', fix_text='Fixed.', fix=None, fixable=True)

	Execute the verification with selected option.

	
scale(type=None, option='old', bscale=1, bzero=0)

	Scale image data by using BSCALE/BZERO.

Call to this method will scale data and update the keywords
of BSCALE and BZERO in _header. This method should
only be used right before writing to the output file, as the
data will be scaled and is therefore not very usable after the
call.

	Parameters:

		type : str, optional

destination data type, use a string representing a numpy
dtype name, (e.g. 'uint8', 'int16', 'float32'
etc.). If is None [http://docs.python.org/library/constants.html#None], use the current data type.

option : str

How to scale the data: if "old", use the original
BSCALE and BZERO values when the data was
read/created. If "minmax", use the minimum and maximum
of the data to scale. The option will be overwritten by
any user specified bscale/bzero values.

bscale, bzero : int, optional

User-specified BSCALE and BZERO values.

	
size()

	Size (in bytes) of the data portion of the HDU.

	
classmethod unregister_hdu(hducls)

	

	
update_ext_name(value, comment=None, before=None, after=None, savecomment=False)

	Update the extension name associated with the HDU.

If the keyword already exists in the Header, it’s value and/or comment
will be updated. If it does not exist, a new card will be created
and it will be placed before or after the specified location.
If no before or after is specified, it will be appended at
the end.

	Parameters:

		value : str

value to be used for the new extension name

comment : str, optional

to be used for updating, default=None.

before : str or int, optional

name of the keyword, or index of the Card before which
the new card will be placed in the Header. The argument
before takes precedence over after if both specified.

after : str or int, optional

name of the keyword, or index of the Card after which
the new card will be placed in the Header.

savecomment : bool, optional

When True [http://docs.python.org/library/constants.html#True], preserve the current comment for an existing
keyword. The argument savecomment takes precedence over
comment if both specified. If comment is not
specified then the current comment will automatically be
preserved.

	
update_ext_version(value, comment=None, before=None, after=None, savecomment=False)

	Update the extension version associated with the HDU.

If the keyword already exists in the Header, it’s value and/or comment
will be updated. If it does not exist, a new card will be created
and it will be placed before or after the specified location.
If no before or after is specified, it will be appended at
the end.

	Parameters:

		value : str

value to be used for the new extension version

comment : str, optional

to be used for updating, default=None.

before : str or int, optional

name of the keyword, or index of the Card before which
the new card will be placed in the Header. The argument
before takes precedence over after if both specified.

after : str or int, optional

name of the keyword, or index of the Card after which
the new card will be placed in the Header.

savecomment : bool, optional

When True [http://docs.python.org/library/constants.html#True], preserve the current comment for an existing
keyword. The argument savecomment takes precedence over
comment if both specified. If comment is not
specified then the current comment will automatically be
preserved.

	
update_header()

	Update the header keywords to agree with the data.

	
verify(option='warn')

	Verify all values in the instance.

	Parameters:

		option : str

Output verification option. Must be one of "fix",
"silentfix", "ignore", "warn", or
"exception". See Verification options for more info.

	
verify_checksum(blocking='standard')

	Verify that the value in the CHECKSUM keyword matches the
value calculated for the current HDU CHECKSUM.

	blocking: str, optional

	“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

	Returns:

		valid : int

	0 - failure

	1 - success

	2 - no CHECKSUM keyword present

	
verify_datasum(blocking='standard')

	Verify that the value in the DATASUM keyword matches the value
calculated for the DATASUM of the current HDU data.

	blocking: str, optional

	“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

	Returns:

		valid : int

	0 - failure

	1 - success

	2 - no DATASUM keyword present

	
writeto(*args, **kwargs)

	Works similarly to the normal writeto(), but prepends a default
PrimaryHDU are required by extension HDUs (which cannot stand on
their own).

	
ImgCode = {'uint64': 64, 'uint16': 16, 'int16': 16, 'int64': 64, 'int32': 32, 'float64': -64, 'uint8': 8, 'float32': -32, 'uint32': 32}

	

	
NumCode = {-64: 'float64', -32: 'float32', 32: 'int32', 8: 'uint8', 64: 'int64', 16: 'int16'}

	

	
data

	Works similarly to property(), but computes the value only once.

Adapted from the recipe at
http://code.activestate.com/recipes/363602-lazy-property-evaluation

	
header

	

	
is_image

	

	
name

	

	
section

	Access a section of the image array without loading the entire array
into memory. The Section object returned by this attribute is
not meant to be used directly by itself. Rather, slices of the section
return the appropriate slice of the data, and loads only that section
into memory.

Sections are mostly obsoleted by memmap support, but should still be
used to deal with very large scaled images. See the
Data Sections section of the PyFITS documentation for more
details.

	
shape

	Shape of the image array–should be equivalent to self.data.shape.

	
standard_keyword_comments = {'BITPIX': 'array data type', 'XTENSION': 'Image extension', 'SIMPLE': 'conforms to FITS standard', 'NAXIS': 'number of array dimensions', 'PCOUNT': 'number of parameters', 'GROUPS': 'has groups', 'GCOUNT': 'number of groups'}

	

CompImageHDU

	
class pyfits.CompImageHDU(data=None, header=None, name=None, compressionType='RICE_1', tileSize=None, hcompScale=0, hcompSmooth=0, quantizeLevel=16.0, do_not_scale_image_data=False, uint=False, scale_back=False, **kwargs)

	Bases: pyfits.hdu.table.BinTableHDU

Compressed Image HDU class.

	Parameters:

		data : array, optional

data of the image

header : Header instance, optional

header to be associated with the image; when reading the HDU from a
file (data=DELAYED), the header read from the file

name : str, optional

the EXTNAME value; if this value is None [http://docs.python.org/library/constants.html#None], then the name from
the input image header will be used; if there is no name in the
input image header then the default name COMPRESSED_IMAGE is
used.

compressionType : str, optional

compression algorithm ‘RICE_1’, ‘PLIO_1’, ‘GZIP_1’, ‘HCOMPRESS_1’

tileSize : int, optional

compression tile sizes. Default treats each row of image as a
tile.

hcompScale : float, optional

HCOMPRESS scale parameter

hcompSmooth : float, optional

HCOMPRESS smooth parameter

quantizeLevel : float, optional

floating point quantization level; see note below

Notes

The pyfits module supports 2 methods of image compression.

	The entire FITS file may be externally compressed with the gzip
or pkzip utility programs, producing a *.gz or *.zip
file, respectively. When reading compressed files of this type,
pyfits first uncompresses the entire file into a temporary file
before performing the requested read operations.
The pyfits module does not support writing to these
types of compressed files. This type of compression is
supported in the _File class, not in the CompImageHDU class.
The file compression type is recognized by the .gz or
.zip file name extension.

	The CompImageHDU class supports the FITS tiled image
compression convention in which the image is subdivided into a
grid of rectangular tiles, and each tile of pixels is
individually compressed.
The details of this FITS compression convention are described at
the FITS Support Office web site [http://fits.gsfc.nasa.gov/registry/tilecompression.html].
Basically, the compressed image tiles are stored in rows of a
variable length arrray column in a FITS binary table. The
pyfits module recognizes that this binary table extension
contains an image and treats it as if it were an image
extension. Under this tile-compression format, FITS header
keywords remain uncompressed. At this time, pyfits does not
support the ability to extract and uncompress sections of the
image without having to uncompress the entire image.

The pyfits module supports 3 general-purpose compression algorithms
plus one other special-purpose compression technique that is designed
for data masks with positive integer pixel values. The 3 general
purpose algorithms are GZIP, Rice, and HCOMPRESS, and the
special-purpose technique is the IRAF pixel list compression technique
(PLIO). The compressionType parameter defines the compression
algorithm to be used.

The FITS image can be subdivided into any desired rectangular grid of
compression tiles. With the GZIP, Rice, and PLIO algorithms, the
default is to take each row of the image as a tile. The HCOMPRESS
algorithm is inherently 2-dimensional in nature, so the default in this
case is to take 16 rows of the image per tile. In most cases, it makes
little difference what tiling pattern is used, so the default tiles are
usually adequate. In the case of very small images, it could be more
efficient to compress the whole image as a single tile. Note that the
image dimensions are not required to be an integer multiple of the tile
dimensions; if not, then the tiles at the edges of the image will be
smaller than the other tiles. The tileSize parameter may be provided
as a list of tile sizes, one for each dimension in the image. For
example a tileSize value of [100,100] would divide a 300 X 300
image into 9 100 X 100 tiles.

The 4 supported image compression algorithms are all ‘loss-less’ when
applied to integer FITS images; the pixel values are preserved exactly
with no loss of information during the compression and uncompression
process. In addition, the HCOMPRESS algorithm supports a ‘lossy’
compression mode that will produce larger amount of image compression.
This is achieved by specifying a non-zero value for the hcompScale
parameter. Since the amount of compression that is achieved depends
directly on the RMS noise in the image, it is usually more convenient
to specify the hcompScale factor relative to the RMS noise. Setting
hcompScale = 2.5 means use a scale factor that is 2.5 times the
calculated RMS noise in the image tile. In some cases it may be
desirable to specify the exact scaling to be used, instead of
specifying it relative to the calculated noise value. This may be done
by specifying the negative of the desired scale value (typically in the
range -2 to -100).

Very high compression factors (of 100 or more) can be achieved by using
large hcompScale values, however, this can produce undesireable
‘blocky’ artifacts in the compressed image. A variation of the
HCOMPRESS algorithm (called HSCOMPRESS) can be used in this case to
apply a small amount of smoothing of the image when it is uncompressed
to help cover up these artifacts. This smoothing is purely cosmetic
and does not cause any significant change to the image pixel values.
Setting the hcompSmooth parameter to 1 will engage the smoothing
algorithm.

Floating point FITS images (which have BITPIX = -32 or -64) usually
contain too much ‘noise’ in the least significant bits of the mantissa
of the pixel values to be effectively compressed with any lossless
algorithm. Consequently, floating point images are first quantized
into scaled integer pixel values (and thus throwing away much of the
noise) before being compressed with the specified algorithm (either
GZIP, RICE, or HCOMPRESS). This technique produces much higher
compression factors than simply using the GZIP utility to externally
compress the whole FITS file, but it also means that the original
floating point value pixel values are not exactly perserved. When done
properly, this integer scaling technique will only discard the
insignificant noise while still preserving all the real imformation in
the image. The amount of precision that is retained in the pixel
values is controlled by the quantizeLevel parameter. Larger values
will result in compressed images whose pixels more closely match the
floating point pixel values, but at the same time the amount of
compression that is achieved will be reduced. Users should experiment
with different values for this parameter to determine the optimal value
that preserves all the useful information in the image, without
needlessly preserving all the ‘noise’ which will hurt the compression
efficiency.

The default value for the quantizeLevel scale factor is 16, which
means that scaled integer pixel values will be quantized such that the
difference between adjacent integer values will be 1/16th of the noise
level in the image background. An optimized algorithm is used to
accurately estimate the noise in the image. As an example, if the RMS
noise in the background pixels of an image = 32.0, then the spacing
between adjacent scaled integer pixel values will equal 2.0 by default.
Note that the RMS noise is independently calculated for each tile of
the image, so the resulting integer scaling factor may fluctuate
slightly for each tile. In some cases, it may be desireable to specify
the exact quantization level to be used, instead of specifying it
relative to the calculated noise value. This may be done by specifying
the negative of desired quantization level for the value of
quantizeLevel. In the previous example, one could specify
quantizeLevel`=-2.0 so that the quantized integer levels differ by
2.0. Larger negative values for `quantizeLevel means that the levels
are more coarsely-spaced, and will produce higher compression factors.

	
add_checksum(when=None, override_datasum=False, blocking='standard')

	Add the CHECKSUM and DATASUM cards to this HDU with
the values set to the checksum calculated for the HDU and the
data respectively. The addition of the DATASUM card may
be overridden.

	Parameters:

		when : str, optional

comment string for the cards; by default the comments
will represent the time when the checksum was calculated

override_datasum : bool, optional

add the CHECKSUM card only

blocking: str, optional :

“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

Notes

For testing purposes, first call add_datasum with a when
argument, then call add_checksum with a when argument and
override_datasum set to True [http://docs.python.org/library/constants.html#True]. This will provide
consistent comments for both cards and enable the generation
of a CHECKSUM card with a consistent value.

	
add_datasum(when=None, blocking='standard')

	Add the DATASUM card to this HDU with the value set to the
checksum calculated for the data.

	Parameters:

		when : str, optional

Comment string for the card that by default represents the
time when the checksum was calculated

blocking: str, optional :

“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

	Returns:

		checksum : int

The calculated datasum

Notes

For testing purposes, provide a when argument to enable the
comment value in the card to remain consistent. This will
enable the generation of a CHECKSUM card with a consistent
value.

	
copy()

	Make a copy of the table HDU, both header and data are copied.

	
filebytes()

	Calculates and returns the number of bytes that this HDU will write to
a file.

	Parameters:

		None :

	Returns:

		Number of bytes :

	
fileinfo()

	Returns a dictionary detailing information about the locations
of this HDU within any associated file. The values are only
valid after a read or write of the associated file with no
intervening changes to the HDUList.

	Parameters:

		None :

	Returns:

		dictionary or None :

The dictionary details information about the locations of
this HDU within an associated file. Returns None [http://docs.python.org/library/constants.html#None] when
the HDU is not associated with a file.

Dictionary contents:

	Key
	Value

	file
	File object associated with the HDU

	filemode
	Mode in which the file was opened (readonly, copyonwrite,
update, append, ostream)

	hdrLoc
	Starting byte location of header in file

	datLoc
	Starting byte location of data block in file

	datSpan
	Data size including padding

	
classmethod fromstring(data, fileobj=None, offset=0, checksum=False, ignore_missing_end=False, **kwargs)

	Creates a new HDU object of the appropriate type from a string
containing the HDU’s entire header and, optionally, its data.

	Parameters:

		data : str

A byte string contining the HDU’s header and, optionally, its data.
If fileobj is not specified, and the length of data extends
beyond the header, then the trailing data is taken to be the HDU’s
data. If fileobj is specified then the trailing data is ignored.

fileobj : file, optional

The file-like object that this HDU was read from.

offset : int, optional

If fileobj is specified, the offset into the file-like object at
which this HDU begins.

checksum : bool optional

Check the HDU’s checksum and/or datasum.

ignore_missing_end : bool, optional

Ignore a missing end card in the header data. Note that without
the end card the end of the header can’t be found, so the entire
data is just assumed to be the header.

kwargs : optional

May contain additional keyword arguments specific to an HDU type.
Any unrecognized kwargs are simply ignored.

	
get_coldefs(*args, **kwargs)

	[Deprecated] Returns the table’s column definitions.

	
classmethod match_header(header)

	

	
classmethod readfrom(fileobj, checksum=False, ignore_missing_end=False, **kwargs)

	Read the HDU from a file. Normally an HDU should be opened with
fitsopen() which reads the entire HDU list in a FITS file. But this
method is still provided for symmetry with writeto().

	Parameters:

		fileobj : file object or file-like object

Input FITS file. The file’s seek pointer is assumed to be at the
beginning of the HDU.

checksum : bool

If True [http://docs.python.org/library/constants.html#True], verifies that both DATASUM and
CHECKSUM card values (when present in the HDU header)
match the header and data of all HDU’s in the file.

ignore_missing_end : bool

Do not issue an exception when opening a file that is
missing an END card in the last header.

	
classmethod register_hdu(hducls)

	

	
req_cards(keyword, pos, test, fix_value, option, errlist)

	Check the existence, location, and value of a required Card.

TODO: Write about parameters

If pos = None [http://docs.python.org/library/constants.html#None], it can be anywhere. If the card does not exist,
the new card will have the fix_value as its value when created.
Also check the card’s value by using the test [http://docs.python.org/library/test.html#module-test] argument.

	
run_option(option='warn', err_text='', fix_text='Fixed.', fix=None, fixable=True)

	Execute the verification with selected option.

	
scale(type=None, option='old', bscale=1, bzero=0)

	Scale image data by using BSCALE and BZERO.

Calling this method will scale self.data and update the keywords of
BSCALE and BZERO in self._header and self._image_header.
This method should only be used right before writing to the output
file, as the data will be scaled and is therefore not very usable after
the call.

	Parameters:

		type : str, optional

destination data type, use a string representing a numpy dtype
name, (e.g. 'uint8', 'int16', 'float32' etc.). If is
None [http://docs.python.org/library/constants.html#None], use the current data type.

option : str, optional

how to scale the data: if "old", use the original BSCALE
and BZERO values when the data was read/created. If
"minmax", use the minimum and maximum of the data to scale.
The option will be overwritten by any user-specified bscale/bzero
values.

bscale, bzero : int, optional

user specified BSCALE and BZERO values.

	
size()

	Size (in bytes) of the data portion of the HDU.

	
classmethod tcreate(datafile, cdfile=None, hfile=None, replace=False)

	Create a table from the input ASCII files. The input is from up to
three separate files, one containing column definitions, one containing
header parameters, and one containing column data. The column
definition and header parameters files are not required. When absent
the column definitions and/or header parameters are taken from the
current values in this HDU.

	Parameters:

		datafile : file path, file object or file-like object

Input data file containing the table data in ASCII format.

cdfile : file path, file object, file-like object, optional

Input column definition file containing the names,
formats, display formats, physical units, multidimensional
array dimensions, undefined values, scale factors, and
offsets associated with the columns in the table. If
None [http://docs.python.org/library/constants.html#None], the column definitions are taken from the current
values in this object.

hfile : file path, file object, file-like object, optional

Input parameter definition file containing the header
parameter definitions to be associated with the table. If
None [http://docs.python.org/library/constants.html#None], the header parameter definitions are taken from
the current values in this objects header.

replace : bool

When True [http://docs.python.org/library/constants.html#True], indicates that the entire header should be
replaced with the contents of the ASCII file instead of
just updating the current header.

Notes

The primary use for the tcreate method is to allow the input
of ASCII data that was edited in a standard text editor of the
table data and parameters. The tdump method can be used to
create the initial ASCII files.

	datafile: Each line of the data file represents one row of table
data. The data is output one column at a time in column order. If
a column contains an array, each element of the column array in the
current row is output before moving on to the next column. Each row
ends with a new line.

Integer data is output right-justified in a 21-character field
followed by a blank. Floating point data is output right justified
using ‘g’ format in a 21-character field with 15 digits of
precision, followed by a blank. String data that does not contain
whitespace is output left-justified in a field whose width matches
the width specified in the TFORM header parameter for the
column, followed by a blank. When the string data contains
whitespace characters, the string is enclosed in quotation marks
(""). For the last data element in a row, the trailing blank in
the field is replaced by a new line character.

For column data containing variable length arrays (‘P’ format), the
array data is preceded by the string 'VLA_Length= ' and the
integer length of the array for that row, left-justified in a
21-character field, followed by a blank.

For column data representing a bit field (‘X’ format), each bit
value in the field is output right-justified in a 21-character field
as 1 (for true) or 0 (for false).

	cdfile: Each line of the column definitions file provides the
definitions for one column in the table. The line is broken up into
8, sixteen-character fields. The first field provides the column
name (TTYPEn). The second field provides the column format
(TFORMn). The third field provides the display format
(TDISPn). The fourth field provides the physical units
(TUNITn). The fifth field provides the dimensions for a
multidimensional array (TDIMn). The sixth field provides the
value that signifies an undefined value (TNULLn). The seventh
field provides the scale factor (TSCALn). The eighth field
provides the offset value (TZEROn). A field value of "" is
used to represent the case where no value is provided.

	hfile: Each line of the header parameters file provides the
definition of a single HDU header card as represented by the card
image.

	
tdump(datafile=None, cdfile=None, hfile=None, clobber=False)

	Dump the table HDU to a file in ASCII format. The table may be dumped
in three separate files, one containing column definitions, one
containing header parameters, and one for table data.

	Parameters:

		datafile : file path, file object or file-like object, optional

Output data file. The default is the root name of the
fits file associated with this HDU appended with the
extension .txt.

cdfile : file path, file object or file-like object, optional

Output column definitions file. The default is None [http://docs.python.org/library/constants.html#None], no
column definitions output is produced.

hfile : file path, file object or file-like object, optional

Output header parameters file. The default is None [http://docs.python.org/library/constants.html#None],
no header parameters output is produced.

clobber : bool

Overwrite the output files if they exist.

Notes

The primary use for the tdump method is to allow editing in a
standard text editor of the table data and parameters. The
tcreate method can be used to reassemble the table from the
three ASCII files.

	datafile: Each line of the data file represents one row of table
data. The data is output one column at a time in column order. If
a column contains an array, each element of the column array in the
current row is output before moving on to the next column. Each row
ends with a new line.

Integer data is output right-justified in a 21-character field
followed by a blank. Floating point data is output right justified
using ‘g’ format in a 21-character field with 15 digits of
precision, followed by a blank. String data that does not contain
whitespace is output left-justified in a field whose width matches
the width specified in the TFORM header parameter for the
column, followed by a blank. When the string data contains
whitespace characters, the string is enclosed in quotation marks
(""). For the last data element in a row, the trailing blank in
the field is replaced by a new line character.

For column data containing variable length arrays (‘P’ format), the
array data is preceded by the string 'VLA_Length= ' and the
integer length of the array for that row, left-justified in a
21-character field, followed by a blank.

For column data representing a bit field (‘X’ format), each bit
value in the field is output right-justified in a 21-character field
as 1 (for true) or 0 (for false).

	cdfile: Each line of the column definitions file provides the
definitions for one column in the table. The line is broken up into
8, sixteen-character fields. The first field provides the column
name (TTYPEn). The second field provides the column format
(TFORMn). The third field provides the display format
(TDISPn). The fourth field provides the physical units
(TUNITn). The fifth field provides the dimensions for a
multidimensional array (TDIMn). The sixth field provides the
value that signifies an undefined value (TNULLn). The seventh
field provides the scale factor (TSCALn). The eighth field
provides the offset value (TZEROn). A field value of "" is
used to represent the case where no value is provided.

	hfile: Each line of the header parameters file provides the
definition of a single HDU header card as represented by the card
image.

	
classmethod unregister_hdu(hducls)

	

	
update()

	Update header keywords to reflect recent changes of columns.

	
updateCompressedData()

	Compress the image data so that it may be written to a file.

	
updateHeader()

	Update the table header cards to match the compressed data.

	
updateHeaderData(image_header, name=None, compressionType=None, tileSize=None, hcompScale=None, hcompSmooth=None, quantizeLevel=None)

	Update the table header (_header) to the compressed
image format and to match the input data (if any). Create
the image header (_image_header) from the input image
header (if any) and ensure it matches the input
data. Create the initially-empty table data array to hold
the compressed data.

This method is mainly called internally, but a user may wish to
call this method after assigning new data to the CompImageHDU
object that is of a different type.

	Parameters:

		image_header : Header instance

header to be associated with the image

name : str, optional

the EXTNAME value; if this value is None [http://docs.python.org/library/constants.html#None], then the name from
the input image header will be used; if there is no name in the
input image header then the default name ‘COMPRESSED_IMAGE’ is used

compressionType : str, optional

compression algorithm ‘RICE_1’, ‘PLIO_1’, ‘GZIP_1’, ‘HCOMPRESS_1’;
if this value is None [http://docs.python.org/library/constants.html#None], use value already in the header; if no
value already in the header, use ‘RICE_1’

tileSize : sequence of int, optional

compression tile sizes as a list; if this value is None [http://docs.python.org/library/constants.html#None], use
value already in the header; if no value already in the header,
treat each row of image as a tile

hcompScale : float, optional

HCOMPRESS scale parameter; if this value is None [http://docs.python.org/library/constants.html#None], use the value
already in the header; if no value already in the header, use 1

hcompSmooth : float, optional

HCOMPRESS smooth parameter; if this value is None [http://docs.python.org/library/constants.html#None], use the value
already in the header; if no value already in the header, use 0

quantizeLevel : float, optional

floating point quantization level; if this value is None [http://docs.python.org/library/constants.html#None], use the
value already in the header; if no value already in header, use 16

	
update_ext_name(value, comment=None, before=None, after=None, savecomment=False)

	Update the extension name associated with the HDU.

If the keyword already exists in the Header, it’s value and/or comment
will be updated. If it does not exist, a new card will be created
and it will be placed before or after the specified location.
If no before or after is specified, it will be appended at
the end.

	Parameters:

		value : str

value to be used for the new extension name

comment : str, optional

to be used for updating, default=None.

before : str or int, optional

name of the keyword, or index of the Card before which
the new card will be placed in the Header. The argument
before takes precedence over after if both specified.

after : str or int, optional

name of the keyword, or index of the Card after which
the new card will be placed in the Header.

savecomment : bool, optional

When True [http://docs.python.org/library/constants.html#True], preserve the current comment for an existing
keyword. The argument savecomment takes precedence over
comment if both specified. If comment is not
specified then the current comment will automatically be
preserved.

	
update_ext_version(value, comment=None, before=None, after=None, savecomment=False)

	Update the extension version associated with the HDU.

If the keyword already exists in the Header, it’s value and/or comment
will be updated. If it does not exist, a new card will be created
and it will be placed before or after the specified location.
If no before or after is specified, it will be appended at
the end.

	Parameters:

		value : str

value to be used for the new extension version

comment : str, optional

to be used for updating, default=None.

before : str or int, optional

name of the keyword, or index of the Card before which
the new card will be placed in the Header. The argument
before takes precedence over after if both specified.

after : str or int, optional

name of the keyword, or index of the Card after which
the new card will be placed in the Header.

savecomment : bool, optional

When True [http://docs.python.org/library/constants.html#True], preserve the current comment for an existing
keyword. The argument savecomment takes precedence over
comment if both specified. If comment is not
specified then the current comment will automatically be
preserved.

	
verify(option='warn')

	Verify all values in the instance.

	Parameters:

		option : str

Output verification option. Must be one of "fix",
"silentfix", "ignore", "warn", or
"exception". See Verification options for more info.

	
verify_checksum(blocking='standard')

	Verify that the value in the CHECKSUM keyword matches the
value calculated for the current HDU CHECKSUM.

	blocking: str, optional

	“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

	Returns:

		valid : int

	0 - failure

	1 - success

	2 - no CHECKSUM keyword present

	
verify_datasum(blocking='standard')

	Verify that the value in the DATASUM keyword matches the value
calculated for the DATASUM of the current HDU data.

	blocking: str, optional

	“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

	Returns:

		valid : int

	0 - failure

	1 - success

	2 - no DATASUM keyword present

	
writeto(*args, **kwargs)

	Works similarly to the normal writeto(), but prepends a default
PrimaryHDU are required by extension HDUs (which cannot stand on
their own).

	
columns

	Works similarly to property(), but computes the value only once.

Adapted from the recipe at
http://code.activestate.com/recipes/363602-lazy-property-evaluation

	
compData

	Works similarly to property(), but computes the value only once.

Adapted from the recipe at
http://code.activestate.com/recipes/363602-lazy-property-evaluation

	
data

	Works similarly to property(), but computes the value only once.

Adapted from the recipe at
http://code.activestate.com/recipes/363602-lazy-property-evaluation

	
header

	Works similarly to property(), but computes the value only once.

Adapted from the recipe at
http://code.activestate.com/recipes/363602-lazy-property-evaluation

	
name

	

	
shape

	Shape of the image array–should be equivalent to self.data.shape.

	
tdump_file_format = '\n\n- **datafile:** Each line of the data file represents one row of table\n data. The data is output one column at a time in column order. If\n a column contains an array, each element of the column array in the\n current row is output before moving on to the next column. Each row\n ends with a new line.\n\n Integer data is output right-justified in a 21-character field\n followed by a blank. Floating point data is output right justified\n using \'g\' format in a 21-character field with 15 digits of\n precision, followed by a blank. String data that does not contain\n whitespace is output left-justified in a field whose width matches\n the width specified in the ``TFORM`` header parameter for the\n column, followed by a blank. When the string data contains\n whitespace characters, the string is enclosed in quotation marks\n (``""``). For the last data element in a row, the trailing blank in\n the field is replaced by a new line character.\n\n For column data containing variable length arrays (\'P\' format), the\n array data is preceded by the string ``\'VLA_Length= \'`` and the\n integer length of the array for that row, left-justified in a\n 21-character field, followed by a blank.\n\n For column data representing a bit field (\'X\' format), each bit\n value in the field is output right-justified in a 21-character field\n as 1 (for true) or 0 (for false).\n\n- **cdfile:** Each line of the column definitions file provides the\n definitions for one column in the table. The line is broken up into\n 8, sixteen-character fields. The first field provides the column\n name (``TTYPEn``). The second field provides the column format\n (``TFORMn``). The third field provides the display format\n (``TDISPn``). The fourth field provides the physical units\n (``TUNITn``). The fifth field provides the dimensions for a\n multidimensional array (``TDIMn``). The sixth field provides the\n value that signifies an undefined value (``TNULLn``). The seventh\n field provides the scale factor (``TSCALn``). The eighth field\n provides the offset value (``TZEROn``). A field value of ``""`` is\n used to represent the case where no value is provided.\n\n- **hfile:** Each line of the header parameters file provides the\n definition of a single HDU header card as represented by the card\n image.\n'

	

Section

	
class pyfits.Section(hdu)

	Bases: object

Image section.

Slices of this object load the corresponding section of an image array from
the underlying FITS file on disk, and applies any BSCALE/BZERO factors.

Section slices cannot be assigned to, and modifications to a section are
not saved back to the underlying file.

See the Data Sections section of the PyFITS documentation for more
details.

 Copyright 2013, J. C. Hsu, Paul Barrett, Christopher Hanley, James Taylor, Michael Droettboom, Erik M. Bray.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyFITS 3.0.13.dev documentation

 	API Documentation

Exceptions and Utility Classes

Exceptions

VerifyError

	
class pyfits.VerifyError

	Bases: exceptions.Exception

Verify exception class.

x.__init__(...) initializes x; see help(type(x)) for signature

Utility Classes

Delayed

	
class pyfits.Delayed(hdu=None, field=None)

	Bases: object

Delayed file-reading data.

Undefined

	
class pyfits.Undefined

	Undefined value.

 Copyright 2013, J. C. Hsu, Paul Barrett, Christopher Hanley, James Taylor, Michael Droettboom, Erik M. Bray.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PyFITS 3.0.13.dev documentation

 	API Documentation

Verification options

There are 5 options for the output_verify argument of the following
methods: close(), writeto(), and flush(). In these
cases, they are passed to a verify() call within these
methods.

exception

This option will raise an exception if any FITS standard is
violated. This is the default option for output (i.e. when
writeto(), close(), or flush() is called. If a user
wants to overwrite this default on output, the other options listed
below can be used.

ignore

This option will ignore any FITS standard violation. On output, it
will write the HDU List content to the output FITS file, whether or
not it is conforming to FITS standard.

The ignore option is useful in these situations, for example:

	An input FITS file with non-standard is read and the user wants
to copy or write out after some modification to an output
file. The non-standard will be preserved in such output file.

	A user wants to create a non-standard FITS file on purpose,
possibly for testing purpose.

No warning message will be printed out. This is like a silent warn
(see below) option.

fix

This option wil try to fix any FITS standard violations. It is not
always possible to fix such violations. In general, there are two
kinds of FITS standard violation: fixable and not fixable. For
example, if a keyword has a floating number with an exponential
notation in lower case ’e’ (e.g. 1.23e11) instead of the upper case
’E’ as required by the FITS standard, it’s a fixable violation. On the
other hand, a keyword name like P.I. is not fixable, since it will
not know what to use to replace the disallowed periods. If a violation
is fixable, this option will print out a message noting it is
fixed. If it is not fixable, it will throw an exception.

The principle behind the fixing is do no harm. For example, it is
plausible to ’fix’ a Card with a keyword name like P.I. by
deleting it, but PyFITS will not take such action to hurt the
integrity of the data.

Not all fixes may be the “correct” fix, but at least PyFITS will try
to make the fix in such a way that it will not throw off other FITS
readers.

silentfix

Same as fix, but will not print out informative messages. This may be
useful in a large script where the user does not want excessive
harmless messages. If the violation is not fixable, it will still
throw an exception.

warn

This option is the same as the ignore option but will send warning
messages. It will not try to fix any FITS standard violations whether
fixable or not.

 Copyright 2013, J. C. Hsu, Paul Barrett, Christopher Hanley, James Taylor, Michael Droettboom, Erik M. Bray.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 previous |

 	PyFITS 3.0.13.dev documentation

PyFITS Developers Guide

This “developers guide” will be brief, as PyFITS will, in the near future,
be deprecated in favor of Astropy (which includes a port of PyFITS now dubbed
astropy.io.fits. As such, it should be sufficient for any developers
wishing to contribute to PyFITS to look at the developer documentation for
Astropy, as much of it applies equally well. In particular, please look at
the Astropy Coding Guidelines [http://astropy.readthedocs.org/en/v0.2.1/development/codeguide.html] and the Documentation Guidelines [http://astropy.readthedocs.org/en/v0.2.1/development/docguide.html] before
getting started with any major contributions to PyFITS (don’t worry if you
don’t immediately absorb everything in those guidelines–it’s just good to
be aware that they exist and have a rough understanding of how to approach the
source code).

Getting the source code

PyFITS was originally developed in SVN, but now most development has moved to
Git, primarily for ease of syncing changes to Astropy. That said, the SVN
repository is still maintained for legacy purposes. PyFITS’ lead maintainer
at STScI will handle synchronizing the Git and SVN repositories, but the steps
for configuring git-svn are documented below for posterity. Outside users
wishing to contribute to the source code should start with Astropy’s guide to
Contributing to Astropy [http://astropy.readthedocs.org/en/v0.2.1/development/workflow/index.html].

The official PyFITS GitHub page is at: https://github.com/spacetelescope/pyfits

The best way to contribute to PyFITS is to create an account on GitHub, fork
your own copy of the PyFITS repository, and then make your changes in your
personal fork and make a pull request when they are ready to share. The entire
process is described in Astropy’s Workflow for Developers [http://astropy.readthedocs.org/en/v0.2.1/development/workflow/development_workflow.html] document. That
documention was written for Astropy, but applies all the same to PyFITS.
Just replace any instance of astropy/astropy.git with
spacetelescope/PyFITS.git and so on. Use of virtualenv and
./setup.py develop are strongly encouraged for developing on PyFITS–use of
this tools is also described in the aforementioned Workflow for Developers
document.

Synchronizing with SVN

This section is primarily intended for developers at STScI who have commit
access to the PyFITS SVN repository (http://svn6.assembla.com/svn/pyfits).
The PyFITS Git and SVN repositories are synced using the git-svn command.
git-svn can be tricky to install as it requires the Perl bindings for SVN, as
well as SVN itself and of course Git. The easiest way to get git-svn is to
ask a system administrator to install it from the OS packaging system.

Most guides for setting up git-svn start out with either the git svn init
command or git svn clone. But because the work of synchronizing the Git
and SVN repositories up until this point has already been done, a faster,
though seemingly less straightforward approach, is to just clone the GitHub
reposiotry and add the git-svn metadata manually:

	Clone the main spacetelescope GitHub repository:

git clone git@github.com:spacetelescope/PyFITS.git

	cd into the repository and open .git/config in an editor and add the
following:

[svn]
 authorsfile = .authors
[svn-remote "svn"]
 url = http://svn6.assembla.com/svn/pyfits
 fetch = trunk:refs/remotes/trunk
 branches = branches/*:refs/remotes/branches/*
 tags = tags/*:refs/remotes/tags/*
[branch "3.0-stable"]
 remote = .
 merge = refs/remotes/branches/3.0-stable
[branch "3.1-stable"]
 remote = .
 merge = refs/remotes/branches/3.1-stable

Repeat the [branch "X.Y-stable"] section following the above pattern
for any actively maintained release branches (see the “Maintenance” section
below for more details on release branches).

Warning

Do not forget to set the [svn]/authorsfile = .authors option, or
the repository will get severely confused when trying to sync SVN
changes with the git repository. The .authors file maps SVN usernames
to developers’ name/e-mail address to use in git commits. If you intend
to synchronize changes you make with SVN, make sure to add yourself to
the .authors file. The format should be self-explanatory.

	Put the hash of the latest revision of the upstream master branch in refs
file for trunk, so git-svn knows where to start synchronizing with SVN’s
trunk:

git rev-parse origin/master > .git/refs/remotes/trunk

	Finally, do:

git svn fetch

to synchronize any new revisions in the SVN repository.

Syncing new changes to SVN

The command for committing new changes in git to the SVN repository is
git svn dcommit. This command goes through all commits on the current
branch that have not yet been committed to SVN and does so.

Whenever you are about to push new changes on the master branch to the remote
remote repository on GitHub it is best to first cross-commit those changes to
SVN. This is because git-svn rewrites the commit messages on all your commits
to include a reference to the SVN revision that was created from that commit.
So if you push first, and then run git svn dcommit you will now have
different commits (as far as their SHA has is concerned) on your local
repository from what you just pushed to the remote repository. The simplest
way to resolve this, when it happens, is to git push --force. This will
override the old history with the new history that includes the SVN revisions
in the commit messages.

It’s easier, however, to remember to always run git svn dcommit before doing
a git push.

Maintenance

At any given time there are two to three lines of development on PyFITS
(possibly more if some critical bug is discovered that needs to be backported
to older release lines, though such situations are rare). Typically there is
the mainline development in the ‘master’ branch, and at least one branch named
after the last minor release. For example, if the version being developed in
the mainline is ‘3.2.0’ there will be, at a minimum, a ‘3.1-stable’ branch into
which bug fixes can be ported. There may also be a ‘3.0-stable’ branch and so
on so long as new bugfix releases are being made with ‘3.0.z’ versions.

Bug fix releases should never add new public APIs or change existing ones–they
should only correct bugs or major oversights. “Minor” releases, where the
second number in the version is increased, may introduce new APIs and may
deprecate old interfaces (see the @deprecated decorated in
pyfits.util, but may not otherwise remove or change (non-buggy) behavior of
old interfaces without backwards compatibility with the previous versions in
the same major version line. Major releases may break backwards compatibility
so long as warning has been given through @deprecated markers and
documentation that those interfaces will break in future versions.

In general all development should be done in the ‘master’ branch, including
development of new features and bug fixes (though temporary branches should
certainly be used aggressively for any individual feature or fix being
developed, they should be merged back into ‘master’ when ready).

The only exception to this rule is when developing a bug fix that only
applies to an older release line. For example it’s possible for a bug to exist
in version ‘3.1.1’ that no longer exists in the ‘master’ branch (perhaps
because it pertains to an older API), but that still exists in the ‘3.1-stable’
branch. Then that bug should be fixed in the ‘3.1-stable’ branch to be
included in the version ‘3.1.2’ bugfix release (assuming a bugfix release is
planned). If that bug pertains to any older release branches (such as
‘3.0-stable’) it should also be backported to those branches by way of
git cherry-pick.

Releasing

Creating a PyFITS release consists 3 main stages each with several sub-steps
according to this rough outline:

	Pre-release
	Set the version string for the release in the setup.cfg file

	Set the release date in the changelog (CHANGES.txt)

	Test that README.txt and CHANGES.txt can be correctly parsed as
RestructuredText.

	Commit these preparations to the repository, creating a specific commit
to tag as the “release”

	Release
	Create a tag from the commit created in the pre-release stage

	Register the new release on PyPI

	Build a source distribution of the release and test that it is
installable (specifically, installable with pip) and that all the tests
pass from an installed version

	Post-release
	Upload the source distribution to PyPI

	Set the version string for the “next” release in the setup.cfg file (the
choice of the next version is based on inference, and does not mean the
“next” version can’t be changed later if desired)

	Create a new section in CHANGES.txt for the next release (using the same
“next” version as in part b)

	Commit these “post-release” changes to the repository

	Push the release commits and the new tag to the remote repository
(GitHub)

	Update the PyFITS website to reflect the new version

	Build Windows installers for all supported Python versions and upload
them to PyPI

Most of these steps are automated by using zest.releaser [https://pypi.python.org/pypi/zest.releaser/3.44] along with some
hooks designed specifically for PyFITS that automate actions such as updating
the PyFITS website.

Prerequisites for performing a release

	Because PyFITS is released (registered and uploaded to) on PyPI it is
necessary to create an account on PyPI and get assigned a “Maintainer”
role for the PyFITS package. Currently the package owners–the only two
people who can add additional Maintainers are Erik Bray <embray@stsci.edu>
and Nicolas Barbey <nicolas.a.barbey@gmail.com>. (It remains a “todo” item
to add a shared “space telescope” account. In the meantime, should both of
those people be hit by a bus simultaneously the PyPI administrators will be
reasonable if the situation is explained to them with proper documentation).

Once your PyPI account is set up, it is necessary to add your PyPI
credentials (username and password) to the .pypirc file in your home
directory with the following format:

[server-login]
username: <your PyPI username>
password: <your PyPI password>

Unfortunately some the setup.py commands for interacting with PyPI
are broken in that they don’t allow interactive password entry. Creating
the .pypirc file is currently the most reliable way to make
authentication with PyPI “just work”. Be sure to chmod 600 this file.

	Also make sure to have an account on readthedocs.org with administrative
access to the PyFITS project on Read the Docs:
https://readthedocs.org/projects/pyfits/
This hosts documentation for all (recent) versions of PyFITS. (TODO: Here
also we need a “space telescope” account with administrative rights to all
STScI projects that use RtD.)

	It’s best to do the release in a relatively “clean” Python environment, so
make sure you have virtualenv [https://pypi.python.org/pypi/virtualenv/1.9.1] installed and that you’ve had some practice
in using it.

	Make sure you have Numpy and nose installed and are able to run the PyFITS
tests successfully without any errors. Even better if you can do this with
tox.

	Make sure that at least someone can make the Windows builds. This requires
a Windows machine with at least Windows XP, Mingw32 with msys, and all of
the Python development packages. Python versions 2.5, 2.6, 2.7, 3.1, and
3.2 should be installed with the installers from python.org, as well as a
recent version of Numpy for each of those Python versions (currently Numpy
1.6.x), as well as Git. (TODO: More detailed instructions for setting up
a Windows development environment.)

	PyFITS also has a page on STScI’s website:
http://www.stsci.edu/institute/software_hardware/pyfits. This is normally
the first hit when Googling ‘pyfits’ so it’s important to keep up to date.
At a minimum each release should update the front page to mention the most
recent release, the Release Notes page with an HTML rendering of the most
recent changelog, and the download page with links to all the current
versions. See the exisint site for examples. The STScI website has both
a test server and a production server. It’s difficult for content creators
to get direct access to the production server, but at least make sure you
have access to the test server on port 8072, and that IT has given you
permission to write to the PyFITS section of the site.

Part of the PyFITS automated release script attempts to update the PyFITS
website (on the test server) as part of the standard release process. So
it’s important to test your access to the site and ability to make edits.
If for any reason the automatic update fails (e.g. your authentication
fails) it is still possible to update the site manually.

Once the updates are made it’s necessary to have IT push the updates to the
production server. As of writing the best person to ask is George Smyth–
asking him directly is the fastest way to get it done, though if you send a
ticket to IT it will be handled eventually.

Release procedure

(These instructions are adapted from the Astropy release process [http://astropy.readthedocs.org/en/v0.2.1/development/building_packaging.html#release]
which itself was adapted from PyFITS’ release process–the former just got
written down first.)

	In a directory outside the pyfits repository, create an activate a
virtualenv in which to do the release (it’s okay to use
--system-site-packages for dependencies like Numpy):

$ virtualenv --system-site-packages --distribute pyfits-release
$ source pyfits-release/bin/activate

	Obtain a clean version of the PyFITS repository. That is, one where you
don’t have any intermediate build files. It is best to use a fresh
git clone from the main repository on GitHub without any of the git-svn
configuration. This is because the git-svn support in zest.releaser does not
handle tagging in branches very well yet.

	Use git checkout to switch to the appropriate branch from which to do
the release. For a new major or minor release (such as 3.0.0 or 3.1.0)
this should be the ‘master’ branch. When making a bugfix release it is
necessary to switch to the appropriate bugfix branch (e.g.
git checkout 3.1-stable to release 3.1.2 up from 3.1.1).

	Install zest.releaser into the virtualenv; use --upgrade --force to
ensure that the latest version is installed in the virtualenv (if you’re
running a csh variant make sure to run rehash afterwards too):

$ pip install zest.releaser --upgrade --force

	Install stsci.distutils which includes some additional releaser hooks
that are useful:

$ pip install stsci.distutils --upgrade --force

	Ensure that any lingering changes to the code have been committed, then
start the release by running:

$ fullrelease

	You will be asked to enter the version to be released. Press enter to
accept the default (which will normally be correct) or enter a specific
version string. A diff will then be shown of CHANGES.txt and setup.cfg
showing that a release date has been added to the changelog, and that the
version has been updated in setup.cfg. Enter ‘Y’ when asked to commit these
changes.

	You will then be shown the command that will be run to tag the release.
Enter ‘Y’ to confirm and run the command.

	When asked “Check out the tag (for tweaks or pypi/distutils server upload)”
enter ‘Y’: This feature is used when uploading the source distribution to
our local package index. When asked to ‘Register and upload’ to PyPI enter
‘N’. We will do this manually later in the process once we’ve tested the
release out first.

	You will be asked to enter a new development version. Normally the next
logical version will be selected–press enter to accept the default, or
enter a specific version string. Do not add ”.dev” to the version, as this
will be appended automatically (ignore the message that says ”.dev0 will be
appended”–it will actually be ”.dev” without the 0). For example, if the
just-released version was “3.1.0” the default next version will be “3.1.1”.
If we want the next version to be, say “3.2.0” then that must be entered
manually.

	You will be shown a diff of CHANGES.txt showing that a new section has been
added for the new development version, and showing that the version has
been updated in setup.py. Enter ‘Y’ to commit these changes.

	When asked to push the changes to a remote repository, enter ‘N’. We want
to test the release out before pushing changes to the remote repository or
registering in PyPI.

	When asked to update the PyFITS homepage enter ‘Y’. The enter the name of
the previous version (in the same MAJOR.MINOR.x branch) and then the name
of the just released version. The defaults will usually be correct. When
asked, enter the username and password for your Zope login. As of writing
this is not necessarily the same as your Exchange password. If the update
succeeeds make sure to e-mail IT and ask them to push the updated pages
from the test site to the production site.

This should complete the portion of the process that’s automated at this point
(though future versions will automate these steps as well, after a few needed
features are added to zest.releaser).

	Check out the tag of the released version. For example:

$ git checkout v3.1.0

	Create the source distribution by doing:

$ python setup.py sdist

	Now, outside the repository create and activate another new virtualenv
for testing the release:

$ virtualenv --system-site-packages --distribute pyfits-release-test
$ source pyfits-release-test/bin/activate

	Use pip to install the source distribution built in step 13 into the
new test virtualenv. This will look something like:

$ pip install PyFITS/dist/pyfits-3.2.0.tar.gz

where the path should be to the sole .tar.gz file in the dist/
directory under your repository clone.

	Try running the tests in the installed PyFITS:

$ pip install nose --force --upgrade
$ nosetests pyfits

If any of the tests fail abort the process and start over. Undo the
previous git commit (where you bumped the version):

$ git reset --hard HEAD^

Resolve the test failure, commit any new fixes, and start the release
procedure over again (it’s rare for this to be an issue if the tests
passed before starting the release, but it is possible–the most likely
case being if some file that should be installed is either not getting
installed or is not included in the source distribution in the first
place).

	Assuming the test installation worked, change directories back into the
repository and register the release on PyPI with:

$ python setup.py register

Upload the source distribution to PyPI; this is preceded by re-running the
sdist command, which is necessary for the upload command to know which
distribution to upload:

$ python setup.py sdist upload

	When releasing a new major or minor version, create a bugfix branch for
that version. Starting from the tagged changset, just checkout a new
branch and push it to the remote server. For example, after releasing
version 3.2.0, do:

$ git checkout -b 3.2-stable

Then edit the setup.cfg so that the version is '3.2.1.dev', and commit
that change. Then, do:

$ git push origin +3.2-stable

Note

You may need to replace origin here with upstream or whatever
remote name you use for the main PyFITS repository on GitHub.

The purpose of this branch is for creating bugfix releases like “3.2.1” and
“3.2.2”, while allowing development of new features to continue in the
master branch. Only changesets that fix bugs without making significant
API changes should be merged to the bugfix branches.

	Log into the Read the Docs control panel for PyFITS at
https://readthedocs.org/projects/pyfits/. Click on “Admin” and then
“Versions”. Find the just-released version (it might not appear for a few
minutes) and click the check mark next to “Active” under that version.
Leave the dropdown list on “Public”, then scroll to the bottom of the page
and click “Submit”.

	We also mirror the most recent documentation at pythonhosted.org/pyfits (
formerly packages.python.org). The easiest way to do this is to wait until
the documentation has been built by Read the Docs (otherwise it is
necessary to build the docs yourself) and download it as a zip file. For
version 3.2.0 the URL would be:

https://media.readthedocs.org/htmlzip/pyfits/v3.2.0/pyfits.zip

(just replace the version part of the URL with the appropriate version).

Then on the package management page on PyPI
(https://pypi.python.org/pypi?%3Aaction=pkg_edit&name=pyfits) locate the
documentation upload form and upload the just-downloaded zip file.

	Build and upload the Windows installers:

	Launch a MinGW shell.

	Just as before make sure you have a pypirc file in your home
directory with your authentication info for PyPI. On Windows the file
should be called just pypirc without the leading . because
having some consistency would make this too easy :)

	Do a git clone of the repository or, if you already have a clone
of the repository do git fetch --tags to get the new tags.

	Check out the tag for the just released version. For example:

$ git checkout v3.2.0

(ignore the message about being in “detached HEAD” state).

	For each Python version installed, build with the mingw32 compiler,
create the binary installer, and upload it. It’s best to use the full
path to each Python version to avoid ambiguity. It is also best to
clean the repository between builds for each version. For example:

$ /C/Python25/python setup.py build -c mingw32 bdist_wininst upload
< ... builds and uploads successfully ... >
$ git clean -dfx
$ /C/Python26/python setup.py build -c mingw32 bdist_wininst upload
< ... builds and puloads successfully ... >
$ git clean -dfx
$ < ... and so on, for all currently supported Python versions ... >

 Copyright 2013, J. C. Hsu, Paul Barrett, Christopher Hanley, James Taylor, Michael Droettboom, Erik M. Bray.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	PyFITS 3.0.13.dev documentation

Index

 A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	

 	add_blank() (pyfits.Header method)

 	add_checksum() (pyfits.BinTableHDU method)

 	

 	(pyfits.CompImageHDU method)

 	(pyfits.GroupsHDU method)

 	(pyfits.ImageHDU method)

 	(pyfits.PrimaryHDU method)

 	(pyfits.TableHDU method)

 	add_col() (pyfits.ColDefs method)

 	add_comment() (pyfits.Header method)

 	add_datasum() (pyfits.BinTableHDU method)

 	

 	(pyfits.CompImageHDU method)

 	(pyfits.GroupsHDU method)

 	(pyfits.ImageHDU method)

 	(pyfits.PrimaryHDU method)

 	(pyfits.TableHDU method)

 	

 	add_history() (pyfits.Header method)

 	append() (in module pyfits.convenience)

 	

 	(pyfits.CardList method)

 	(pyfits.HDUList method)

 	ascardimage() (pyfits.Card method)

 	

 	(pyfits.RecordValuedKeywordCard method)

 	ascardlist() (pyfits.Header method)

B

 	

 	BinTableHDU (class in pyfits)

C

 	

 	Card (class in pyfits)

 	cardimage (pyfits.Card attribute)

 	

 	(pyfits.RecordValuedKeywordCard attribute)

 	CardList (class in pyfits)

 	change_attrib() (pyfits.ColDefs method)

 	change_name() (pyfits.ColDefs method)

 	change_unit() (pyfits.ColDefs method)

 	clear() (pyfits.Header method)

 	close() (pyfits.HDUList method)

 	

 	(pyfits.StreamingHDU method)

 	coerce() (pyfits.RecordValuedKeywordCard class method)

 	ColDefs (class in pyfits)

 	Column (class in pyfits)

 	

 	columns (pyfits.BinTableHDU attribute)

 	

 	(pyfits.CompImageHDU attribute)

 	(pyfits.FITS_rec attribute)

 	(pyfits.GroupsHDU attribute)

 	(pyfits.TableHDU attribute)

 	comment (pyfits.Card attribute)

 	

 	(pyfits.RecordValuedKeywordCard attribute)

 	compData (pyfits.CompImageHDU attribute)

 	CompImageHDU (class in pyfits)

 	copy() (pyfits.BinTableHDU method)

 	

 	(pyfits.CardList method)

 	(pyfits.Column method)

 	(pyfits.CompImageHDU method)

 	(pyfits.GroupsHDU method)

 	(pyfits.Header method)

 	(pyfits.ImageHDU method)

 	(pyfits.PrimaryHDU method)

 	(pyfits.TableHDU method)

 	count_blanks() (pyfits.CardList method)

 	create() (pyfits.RecordValuedKeywordCard class method)

 	create_card() (in module pyfits)

 	create_card_from_string() (in module pyfits)

 	createCard() (pyfits.RecordValuedKeywordCard class method)

 	createCardFromString() (pyfits.RecordValuedKeywordCard class method)

D

 	

 	data (pyfits.BinTableHDU attribute)

 	

 	(pyfits.ColDefs attribute)

 	(pyfits.CompImageHDU attribute)

 	(pyfits.GroupData attribute)

 	(pyfits.GroupsHDU attribute)

 	(pyfits.ImageHDU attribute)

 	(pyfits.PrimaryHDU attribute)

 	(pyfits.TableHDU attribute)

 	del_col() (pyfits.ColDefs method)

 	

 	Delayed (class in pyfits)

 	delval() (in module pyfits.convenience)

F

 	

 	field (pyfits.RecordValuedKeywordCard attribute)

 	field() (pyfits.FITS_rec method)

 	

 	(pyfits.FITS_record method)

 	field_specifier (pyfits.RecordValuedKeywordCard attribute)

 	field_specifier_NFSC_image_RE (pyfits.RecordValuedKeywordCard attribute)

 	field_specifier_NFSC_val (pyfits.RecordValuedKeywordCard attribute)

 	field_specifier_NFSC_val_RE (pyfits.RecordValuedKeywordCard attribute)

 	field_specifier_s (pyfits.RecordValuedKeywordCard attribute)

 	field_specifier_val (pyfits.RecordValuedKeywordCard attribute)

 	filebytes() (pyfits.BinTableHDU method)

 	

 	(pyfits.CompImageHDU method)

 	(pyfits.GroupsHDU method)

 	(pyfits.ImageHDU method)

 	(pyfits.PrimaryHDU method)

 	(pyfits.TableHDU method)

 	

 	fileinfo() (pyfits.BinTableHDU method)

 	

 	(pyfits.CompImageHDU method)

 	(pyfits.GroupsHDU method)

 	(pyfits.HDUList method)

 	(pyfits.ImageHDU method)

 	(pyfits.PrimaryHDU method)

 	(pyfits.TableHDU method)

 	filename() (pyfits.HDUList method)

 	filter_list() (pyfits.CardList method)

 	filterList() (pyfits.CardList method)

 	FITS_rec (class in pyfits)

 	FITS_record (class in pyfits)

 	flush() (pyfits.HDUList method)

 	fromstring() (pyfits.BinTableHDU class method)

 	

 	(pyfits.Card class method)

 	(pyfits.CompImageHDU class method)

 	(pyfits.GroupsHDU class method)

 	(pyfits.Header class method)

 	(pyfits.ImageHDU class method)

 	(pyfits.PrimaryHDU class method)

 	(pyfits.RecordValuedKeywordCard class method)

 	(pyfits.TableHDU class method)

 	fromTxtFile() (pyfits.Header method)

G

 	

 	get() (pyfits.Header method)

 	get_coldefs() (pyfits.BinTableHDU method)

 	

 	(pyfits.CompImageHDU method)

 	(pyfits.TableHDU method)

 	get_comment() (pyfits.Header method)

 	get_history() (pyfits.Header method)

 	getdata() (in module pyfits.convenience)

 	

 	getheader() (in module pyfits.convenience)

 	getval() (in module pyfits.convenience)

 	GroupData (class in pyfits)

 	GroupsHDU (class in pyfits)

H

 	

 	has_key() (pyfits.Header method)

 	HDUList (class in pyfits)

 	

 	Header (class in pyfits)

 	header (pyfits.BinTableHDU attribute)

 	

 	(pyfits.CompImageHDU attribute)

 	(pyfits.GroupsHDU attribute)

 	(pyfits.ImageHDU attribute)

 	(pyfits.PrimaryHDU attribute)

 	(pyfits.TableHDU attribute)

I

 	

 	identifier (pyfits.RecordValuedKeywordCard attribute)

 	ImageHDU (class in pyfits)

 	ImgCode (pyfits.GroupsHDU attribute)

 	

 	(pyfits.ImageHDU attribute)

 	(pyfits.PrimaryHDU attribute)

 	index_of() (pyfits.CardList method)

 	

 	(pyfits.HDUList method)

 	info() (in module pyfits.convenience)

 	

 	(pyfits.ColDefs method)

 	(pyfits.HDUList method)

 	insert() (pyfits.CardList method)

 	

 	(pyfits.HDUList method)

 	

 	is_image (pyfits.GroupsHDU attribute)

 	

 	(pyfits.ImageHDU attribute)

 	(pyfits.PrimaryHDU attribute)

 	items() (pyfits.Header method)

 	iteritems() (pyfits.Header method)

 	iterkeys() (pyfits.Header method)

 	itervalues() (pyfits.Header method)

K

 	

 	key (pyfits.Card attribute)

 	

 	(pyfits.RecordValuedKeywordCard attribute)

 	keys() (pyfits.CardList method)

 	

 	(pyfits.Header method)

 	keyword_name_RE (pyfits.RecordValuedKeywordCard attribute)

 	keyword_NFSC_val (pyfits.RecordValuedKeywordCard attribute)

 	keyword_NFSC_val_comm (pyfits.RecordValuedKeywordCard attribute)

 	

 	keyword_NFSC_val_comm_RE (pyfits.RecordValuedKeywordCard attribute)

 	keyword_val (pyfits.RecordValuedKeywordCard attribute)

 	keyword_val_comm (pyfits.RecordValuedKeywordCard attribute)

 	keyword_val_comm_RE (pyfits.RecordValuedKeywordCard attribute)

L

 	

 	length (pyfits.Card attribute)

 	

 	(pyfits.RecordValuedKeywordCard attribute)

M

 	

 	match_header() (pyfits.BinTableHDU class method)

 	

 	(pyfits.CompImageHDU class method)

 	(pyfits.GroupsHDU class method)

 	(pyfits.ImageHDU class method)

 	(pyfits.PrimaryHDU class method)

 	(pyfits.TableHDU class method)

N

 	

 	name (pyfits.BinTableHDU attribute)

 	

 	(pyfits.CompImageHDU attribute)

 	(pyfits.GroupsHDU attribute)

 	(pyfits.ImageHDU attribute)

 	(pyfits.PrimaryHDU attribute)

 	(pyfits.TableHDU attribute)

 	new_table() (in module pyfits)

 	

 	NumCode (pyfits.GroupsHDU attribute)

 	

 	(pyfits.ImageHDU attribute)

 	(pyfits.PrimaryHDU attribute)

O

 	

 	open() (in module pyfits)

P

 	

 	par() (pyfits.GroupData method)

 	parnames (pyfits.GroupsHDU attribute)

 	pop() (pyfits.Header method)

 	

 	popitem() (pyfits.Header method)

 	PrimaryHDU (class in pyfits)

 	pyfits.convenience (module)

R

 	

 	raw (pyfits.RecordValuedKeywordCard attribute)

 	readall() (pyfits.HDUList method)

 	readfrom() (pyfits.BinTableHDU class method)

 	

 	(pyfits.CompImageHDU class method)

 	(pyfits.GroupsHDU class method)

 	(pyfits.ImageHDU class method)

 	(pyfits.PrimaryHDU class method)

 	(pyfits.TableHDU class method)

 	RecordValuedKeywordCard (class in pyfits)

 	

 	register_hdu() (pyfits.BinTableHDU class method)

 	

 	(pyfits.CompImageHDU class method)

 	(pyfits.GroupsHDU class method)

 	(pyfits.ImageHDU class method)

 	(pyfits.PrimaryHDU class method)

 	(pyfits.TableHDU class method)

 	rename_key() (pyfits.Header method)

 	req_cards() (pyfits.BinTableHDU method)

 	

 	(pyfits.CompImageHDU method)

 	(pyfits.GroupsHDU method)

 	(pyfits.ImageHDU method)

 	(pyfits.PrimaryHDU method)

 	(pyfits.TableHDU method)

 	run_option() (pyfits.BinTableHDU method)

 	

 	(pyfits.Card method)

 	(pyfits.CompImageHDU method)

 	(pyfits.GroupsHDU method)

 	(pyfits.ImageHDU method)

 	(pyfits.PrimaryHDU method)

 	(pyfits.RecordValuedKeywordCard method)

 	(pyfits.TableHDU method)

S

 	

 	scale() (pyfits.CompImageHDU method)

 	

 	(pyfits.GroupsHDU method)

 	(pyfits.ImageHDU method)

 	(pyfits.PrimaryHDU method)

 	Section (class in pyfits)

 	section (pyfits.GroupsHDU attribute)

 	

 	(pyfits.ImageHDU attribute)

 	(pyfits.PrimaryHDU attribute)

 	setdefault() (pyfits.Header method)

 	setfield() (pyfits.FITS_record method)

 	setval() (in module pyfits.convenience)

 	

 	shape (pyfits.CompImageHDU attribute)

 	

 	(pyfits.GroupsHDU attribute)

 	(pyfits.ImageHDU attribute)

 	(pyfits.PrimaryHDU attribute)

 	size() (pyfits.BinTableHDU method)

 	

 	(pyfits.CompImageHDU method)

 	(pyfits.GroupsHDU method)

 	(pyfits.ImageHDU method)

 	(pyfits.PrimaryHDU method)

 	(pyfits.StreamingHDU method)

 	(pyfits.TableHDU method)

 	standard_keyword_comments (pyfits.GroupsHDU attribute)

 	

 	(pyfits.ImageHDU attribute)

 	(pyfits.PrimaryHDU attribute)

 	StreamingHDU (class in pyfits)

 	strvalue() (pyfits.RecordValuedKeywordCard method)

T

 	

 	TableHDU (class in pyfits)

 	tcreate() (in module pyfits)

 	

 	(pyfits.BinTableHDU class method)

 	(pyfits.CompImageHDU class method)

 	tdump() (in module pyfits)

 	

 	(pyfits.BinTableHDU method)

 	(pyfits.CompImageHDU method)

 	

 	tdump_file_format (pyfits.BinTableHDU attribute)

 	

 	(pyfits.CompImageHDU attribute)

 	toTxtFile() (pyfits.Header method)

U

 	

 	Undefined (class in pyfits)

 	unregister_hdu() (pyfits.BinTableHDU class method)

 	

 	(pyfits.CompImageHDU class method)

 	(pyfits.GroupsHDU class method)

 	(pyfits.ImageHDU class method)

 	(pyfits.PrimaryHDU class method)

 	(pyfits.TableHDU class method)

 	update() (in module pyfits.convenience)

 	

 	(pyfits.BinTableHDU method)

 	(pyfits.CompImageHDU method)

 	(pyfits.Header method)

 	(pyfits.TableHDU method)

 	update_ext_name() (pyfits.BinTableHDU method)

 	

 	(pyfits.CompImageHDU method)

 	(pyfits.GroupsHDU method)

 	(pyfits.ImageHDU method)

 	(pyfits.PrimaryHDU method)

 	(pyfits.TableHDU method)

 	update_ext_version() (pyfits.BinTableHDU method)

 	

 	(pyfits.CompImageHDU method)

 	(pyfits.GroupsHDU method)

 	(pyfits.ImageHDU method)

 	(pyfits.PrimaryHDU method)

 	(pyfits.TableHDU method)

 	update_extend() (pyfits.HDUList method)

 	

 	update_header() (pyfits.GroupsHDU method)

 	

 	(pyfits.ImageHDU method)

 	(pyfits.PrimaryHDU method)

 	updateCompressedData() (pyfits.CompImageHDU method)

 	updateHeader() (pyfits.CompImageHDU method)

 	updateHeaderData() (pyfits.CompImageHDU method)

 	upper_key() (in module pyfits)

 	

 	(pyfits.RecordValuedKeywordCard class method)

 	upperKey() (pyfits.RecordValuedKeywordCard class method)

V

 	

 	valid_key_value() (pyfits.RecordValuedKeywordCard class method)

 	validKeyValue() (pyfits.RecordValuedKeywordCard class method)

 	value (pyfits.Card attribute)

 	

 	(pyfits.RecordValuedKeywordCard attribute)

 	values() (pyfits.CardList method)

 	

 	(pyfits.Header method)

 	

 	verify() (pyfits.BinTableHDU method)

 	

 	(pyfits.Card method)

 	(pyfits.CompImageHDU method)

 	(pyfits.GroupsHDU method)

 	(pyfits.HDUList method)

 	(pyfits.ImageHDU method)

 	(pyfits.PrimaryHDU method)

 	(pyfits.RecordValuedKeywordCard method)

 	(pyfits.TableHDU method)

 	verify_checksum() (pyfits.BinTableHDU method)

 	

 	(pyfits.CompImageHDU method)

 	(pyfits.GroupsHDU method)

 	(pyfits.ImageHDU method)

 	(pyfits.PrimaryHDU method)

 	(pyfits.TableHDU method)

 	verify_datasum() (pyfits.BinTableHDU method)

 	

 	(pyfits.CompImageHDU method)

 	(pyfits.GroupsHDU method)

 	(pyfits.ImageHDU method)

 	(pyfits.PrimaryHDU method)

 	(pyfits.TableHDU method)

 	VerifyError (class in pyfits)

W

 	

 	write() (pyfits.StreamingHDU method)

 	

 	writeto() (in module pyfits.convenience)

 	

 	(pyfits.BinTableHDU method)

 	(pyfits.CompImageHDU method)

 	(pyfits.GroupsHDU method)

 	(pyfits.HDUList method)

 	(pyfits.ImageHDU method)

 	(pyfits.PrimaryHDU method)

 	(pyfits.TableHDU method)

 Copyright 2013, J. C. Hsu, Paul Barrett, Christopher Hanley, James Taylor, Michael Droettboom, Erik M. Bray.
 Created using Sphinx 1.2.

 _static/Blue.jpg

_static/up-pressed.png

_static/Green.jpg

_images/inheritance-f9497324450df325cfa6a9d3ae2133ae024ba84b.png
pyfits card.CardList

_abcoll Iterable

‘ _abcollSized ‘

*/

_abcoll Container

_abcoll Mapping | _abcoll MutableMapping ‘ .’ pyfits. header Header

_static/comment-bright.png

_images/inheritance-bbeebcca974b2a88be310617449f19ddfe600253.png
card.Card

card RecordvaluedkeywordCard

_static/comment-close.png

_images/inheritance-415cfccddc36cd5ae42cf4a55137fd198aa3285a.png
card.Card

card RecordvaluedkeywordCard

_images/inheritance-45a66ce0eb872538570d8bd8eedf87689fc1b864.png
pyfts fitsrec FITS_record

pyfts hdu table BinableHDU

pyfits column Column

pyfits hd table TableHDU

pyfits column ColDefs

numpyndarmay

numpy core records recamay

e

pyfits hdu groups. GroupData

_static/down-pressed.png

_images/inheritance-68c1c500116e07cd7e7bad24ccc4b1f0a3bea6c1.png
pyfits column Column

pyfits column ColDefs

pyfts fitsrec FITS_record

pyfts hdu table BinableHDU

[rompsdomsy]

numpy: core records recamay

| e e

pyfits hdu groups. GroupData

pyfits hd table TableHDU

_images/inheritance-46d35df7f54a5b188b10465e8c91dca64721360a.png
pyfts fitsrec FITS_record

pyfits column ColDefs

pyfits hd table TableHDU

pyfits column Column

pyfts hdu table BinableHDU

numpyndarmay

numpy core records recamay

e

pyfits hdu groups. GroupData

_images/inheritance-647bf8018d33df558c6e1dea3363031adf1d2053.png
pyfits hduimage.Section

pyfits hdu base ExtensionHDU |——]

pyfits hdu image ImageHDU

_static/minus.png

_images/Red.jpg

_images/inheritance-12106db466b9e57065d24942a010a2ef41750ceb.png
pyfits hdu streaming.StreamingHDU

pyfits hdu table BinTableHDU

pyfits hdu table TableHDU

pyfits hdu image PrimaryHDU | ———! pyfits. hdu.groups GroupsHDU

pyfits hdu base ExtensionHDU

pyfits hdu image ImageHDU

_images/inheritance-673584ca00c306b29a42b71af48ec6038795bc0a.png
pyfts hdu table BinTableHDU
pyfits hd table TableHDU
pyfts fitsrec FITS_record

pyfits column ColDefs

pyfits column Column

numpyndarmay

numpy core records recamay

e

pyfits hdu groups. GroupData

_images/inheritance-ec2bdbde9cf578b8601b3451c25f91122fe352bd.png
pyfts hdu table BinTableHDU
pyfits hd table TableHDU

pyfits column ColDefs,

[mumpyndarray |—————f numpy.core.records recarray |——f pyfts.ftsrec FTS rec |——f pyftshdu.groups.GroupData

pyfits column Column

pyfts fitsrec FITS_record

_images/Hs-2009-14-a-web.jpg

_images/inheritance-23539a39a69a8e37f75e7f3410133e2494e9aa35.png
pyfits hduimage.Section

pyfits hdu base ExtensionHDU |——]

pyfits hdu image ImageHDU

_images/inheritance-dc9478e17aa33687f6a122ba3f06bdca604c6eb5.png
card.Card

card RecordvaluedkeywordCard

_images/inheritance-a2020e3f496118081ebe5b1bb7091480ea83b254.png
abeoll terable

|/ _abcollmutableMapping

4-(pyfits header Header

_abcoll Sized 4{}1’&” Mapping

_abcoll.Container ‘

pyfits card.CardList

search.html

 Navigation

 		
 index

 		PyFITS 3.0.13.dev documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, J. C. Hsu, Paul Barrett, Christopher Hanley, James Taylor, Michael Droettboom, Erik M. Bray.
 Created using Sphinx 1.2.

_images/inheritance-c006bc46d104bfc3871e255a5bbadc2dcb6db96c.png
pyfits hdu table BinTableHDU

pyfits hdu streaming.StreamingHDU

pyfits hdu table TableHDU

pyfits hdu image PrimaryHDU | ———! pyfits. hdu.groups GroupsHDU

pyfits hdu base ExtensionHDU

pyfits hdu image ImageHDU

_images/inheritance-8092a1877b69c11f51ddb4d3121a3d542a727b24.png
pyfits hdu table BinTableHDU

pyfits hdu base ExtensionHDU pyfits hdu image ImageHDU

pyfits hdu table TableHDU

pyfits hdu image PrimaryHDU | ———! pyfits. hdu.groups GroupsHDU

pyfits hdu streaming.StreamingHDU

_images/inheritance-73e6a77115c4831bb4efe75347ef53c62a62ea95.png
pyfits hduimage.Section

pyfits hdu base ExtensionHDU |——]

pyfits hdu image ImageHDU

_images/inheritance-842db98ca1908f39e648ea673a0db5e065c55762.png
pyfits hdu streaming.StreamingHDU

pyfits hdu base ExtensionHDU

pyfits hdu image ImageHDU

pyfits hduimage PrimaryHDU +| pyfits.hdu.groups GroupsHDU

pyfits hdu table BinTableHDU

pyfits hdu table TableHDU

_images/Blue.jpg

_images/inheritance-d74df33d3058644b7828cf650fd49ef9f801d6a7.png
pyfits hdu base ExtensionHDU |——]

pyfits hdu image ImageHDU

pyfits hduimage.Section

_images/Green.jpg

_images/inheritance-75943766c943659e05f35a1bac9c226149e1d33b.png
pyfits hdu table BinTableHDU

pyfits hdu base ExtensionHDU pyfits hdu image ImageHDU

pyfits hdu table TableHDU

pyfits hdu streaming.StreamingHDU

pyfits hdu image PrimaryHDU | ———! pyfits. hdu.groups GroupsHDU

_images/inheritance-dbccd26274b778c09b28abb21c560efd88d74224.png
pyfits card.CardList

_abcoll Iterable

‘ _abcollSized ‘

*/

_abcoll Container

_abcoll Mapping | _abcoll MutableMapping ‘ .’ pyfits. header Header

_images/inheritance-36fee44016c47c2f2fa39588cabb17af3ee49046.png
pyfits card.CardList

_abcoll Iterable

‘ _abcollSized ‘

*/

_abcoll Container

_abcoll Mapping | _abcoll MutableMapping ‘ .’ pyfits. header Header

_images/inheritance-f195538ee833113b5b241cc91b6d5c9b51d9f938.png
pyfits hduimage.Section

pyfits hdu base ExtensionHDU |——]

pyfits hdu image ImageHDU

_images/inheritance-15995821f958d780680728ceccf532c53c16f921.png
pyfits hduimage.Section

pyfits hdu base ExtensionHDU |——]

pyfits hdu image ImageHDU

_images/inheritance-e985b73fb5bd5d551d91e600bdadd3a9585edb11.png
pyfits column Column

pyfits column ColDefs

pyfts hdu table BinableHDU

numpyndarray |

numpy: core records recamay

A

pyfits hdu groups. GroupData

pyfts fitsrec FITS_record

pyfits hd table TableHDU

_images/inheritance-a76b4fcf2ce56800dfa694dd67db6916c266c98e.png
pyfits hdu table BinTableHDU

pyfits hdu image PrimaryHDU

|/ pyfits.hdu groups GroupsHDU

pyfits hdu base ExtensionHDU

pyfits hdu table TableHDU

»| pyfits. hduimage.mageHDU

pyfits hdu streaming.StreamingHDU

_images/inheritance-fcb3a6da0c9f0317084203264f8f415846b50e11.png
pyfits card.CardList

_abcoll Iterable

‘ _abcollSized ‘

*/

_abcoll Container

_abcoll Mapping | _abcoll MutableMapping ‘ .’ pyfits. header Header

_images/inheritance-dfc8bf90611eab14845712686b1619ad3cffd6e4.png
pyfits hdu table TableHDU

pyfits hdu base ExtensionHDU

pyfits hdu image ImageHDU

pyfits hduimage PrimaryHDU +| pyfits.hdu.groups GroupsHDU

pyfits hdu streaming.StreamingHDU

pyfits hdu table BinTableHDU

_images/inheritance-024a5e22a05d803c2db29e16a55c81228eec8c23.png
pyfits hdu hdulist HDUList

_images/inheritance-943fac01fe692b9fc32e5b1ce63cb5c76724f12f.png
pyfits hd table TableHDU
pyfts hdu table BinableHDU

pyfits column Column

pyfts fitsrec FITS_record

pyfits column ColDefs

[mpyndaray

numpy core records recamay

e

pyfits hdu groups. GroupData

_static/plus.png

_static/Hs-2009-14-a-web.jpg

_images/inheritance-34b6216aefc423ff10bd714a36bf95777b013820.png
abeoll terable

|/ _abcollmutableMapping

4-(pyfits header Header

_abcoll Sized 4{}1’&” Mapping

_abcoll.Container ‘

pyfits card.CardList

_images/inheritance-659a8e36f1628b0778f782063fd75cf8844dde4b.png
pyfits hdu hdulist HDUList

_static/up.png

_static/stsci_logo.png

_static/ajax-loader.gif

_static/Red.jpg

_static/file.png

_static/comment.png

_static/down.png

