
PyFITS Documentation
Release 3.4

J. C. Hsu Paul Barrett Christopher Hanley
James Taylor Michael Droettboom Erik M. Bray

Dec 13, 2017

Contents

1 Introduction 1
1.1 Installation . 1
1.2 User Support . 2
1.3 Quick Tutorial . 2
1.4 Reading and Updating Existing FITS Files . 2
1.5 Creating a New FITS File . 8
1.6 Convenience Functions . 10
1.7 Users Guide . 12
1.8 Other Information . 45
1.9 Reference/API . 118

CHAPTER 1

Introduction

The PyFITS module is a Python library providing access to FITS files. FITS (Flexible Image Transport System) is a
portable file standard widely used in the astronomy community to store images and tables.

1.1 Installation

PyFITS requires Python version 2.6 or newer. Support for Python 3.0 through 3.2 is deprecated, but Python 3.3 and
above are fully supported. PyFITS also requires the numpy package. Information about numpy can be found at:

http://numpy.scipy.org/

PyFITS’ source code is mostly pure Python, but includes an optional C module which wraps CFITSIO for compression
support. The latest source distributions and binary installers for Windows can be downloaded from:

http://www.stsci.edu/resources/software_hardware/pyfits/Download

Or from the Python Package Index (PyPI) at:

https://pypi.python.org/pypi/pyfits

PyFITS can be installed using pip (the recommended tool for installing Python packages) using:

$ pip install pyfits

To install PyFITS manually from the source distribution, unpack the tar file and type:

pip install .

This will install PyFITS in the system’s Python site-packages directory. If your system permissions do not allow this
kind of installation, use of virtualenv for personal installations is recommended.

In this guide, we’ll assume that the reader has basic familiarity with Python. Familiarity with numpy is not required,
but it will help to understand the data structures in PyFITS.

1

http://numpy.scipy.org/
http://www.stsci.edu/resources/software_hardware/pyfits/Download
https://pypi.python.org/pypi/pyfits
https://pip.pypa.io/en/stable/
http://www.virtualenv.org

PyFITS Documentation, Release 3.4

1.2 User Support

The official PyFITS web page is:

http://www.stsci.edu/resources/software_hardware/pyfits

If you have any question or comment regarding PyFITS, user support is available through the STScI Help Desk:

* E-mail: help@stsci.edu

* Phone: (410) 338-1082

1.3 Quick Tutorial

This section provides a quick introduction of using PyFITS. The goal is to demonstrate PyFITS’ basic features without
getting into too much detail. If you are a first time user or an occasional PyFITS user, using only the most basic
functionality, this is where you should start. Otherwise, it is safe to skip this chapter.

After installing numpy and PyFITS, start Python and load the PyFITS library. Note that the module name is all lower
case.

>>> import pyfits

1.4 Reading and Updating Existing FITS Files

1.4.1 Opening a FITS file

Once the PyFITS module is loaded, we can open an existing FITS file:

>>> hdulist = pyfits.open('input.fits')

The open() function has several optional arguments which will be discussed in a later chapter. The default mode,
as in the above example, is “readonly”. The open method returns a PyFITS object called an HDUList which is a
list-like object, consisting of HDU objects. An HDU (Header Data Unit) is the highest level component of the FITS
file structure, consisting of a header and (typically) a data array or table.

After the above open call, hdulist[0] is the primary HDU, hdulist[1] is the first extension HDU (if there are
any extensions), and so. It should be noted that PyFITS is using zero-based indexing when referring to HDUs and
header cards, though the FITS standard (which was designed with FORTRAN in mind) uses one-based indexing.

The HDUList has a useful method HDUList.info(), which summarizes the content of the opened FITS file:

>>> hdulist.info()
Filename: test1.fits
No. Name Type Cards Dimensions Format
0 PRIMARY PrimaryHDU 220 () int16
1 SCI ImageHDU 61 (800, 800) float32
2 SCI ImageHDU 61 (800, 800) float32
3 SCI ImageHDU 61 (800, 800) float32
4 SCI ImageHDU 61 (800, 800) float32

After you are done with the opened file, close it with the HDUList.close() method:

>>> hdulist.close()

2 Chapter 1. Introduction

http://www.stsci.edu/resources/software_hardware/pyfits
mailto:help@stsci.edu
https://docs.python.org/2/library/functions.html#open

PyFITS Documentation, Release 3.4

The headers will still be accessible after the HDUList is closed. The data may or may not be accessible depending on
whether the data are touched and if they are memory-mapped, see later chapters for detail.

Working with large files

The pyfits.open() function supports a memmap=True argument that allows the array data of each HDU to be
accessed with mmap, rather than being read into memory all at once. This is particularly useful for working with very
large arrays that cannot fit entirely into physical memory. memmap=True is the default value as of PyFITS v3.1.0.

This has minimal impact on smaller files as well, though some operations, such as reading the array data sequentially,
may incur some additional overhead. On 32-bit systems arrays larger than 2-3 GB cannot be mmap’d (which is fine,
because by that point you’re likely to run out of physical memory anyways), but 64-bit systems are much less limited
in this respect.

Warning: When opening a file with memmap=True, because of how mmap works this means that when the
HDU data is accessed (i.e. hdul[0].data) another handle to the FITS file is opened by mmap. This means that
even after calling hdul.close() the mmap still holds an open handle to the data so that it can still be accessed
by unwary programs that were built with the assumption that the .data attribute has all the data in-memory.

In order to force the mmap to close either wait for the containing HDUList object to go out of scope, or manually
call del hdul[0].data (this works so long as there are no other references held to the data array).

Unsigned integers

Due to the FITS format’s FORTRAN origins, FITS does not natively support unsigned integer data in images or tables.
However, there is a common convention to store unsigned integers as signed integers, along with a shift instruction (a
BZERO keyword with value 2 ** (BITPIX - 1)) to shift up all signed integers to unsigned inters. For example,
when writing the value 0 as an unsigned 32-bit integer, it is stored in the FITS file as -32768, along with the header
keyword BZERO = 32768.

PyFITS recognizes and applies this convention by default, so that all data that looks like it should be interpreted as
unsigned integers is automatically converted (this applies to both images and tables). In PyFITS versions prior to
v3.4.0 this was not applied automatically, and it is necessary to pass the argument uint=True to open(). In v3.4.0
or later this is the default.

Even with uint=False, the BZERO shift is still applied, but the returned array is of “float64” type. To disable
scaling/shifting entirely, use do_not_scale_image_data=True.

Working with compressed files

The open() function will seamlessly open FITS files that have been compressed with gzip, bzip2 or pkzip. Note that
in this context we’re talking about a fits file that has been compressed with one of these utilities - e.g. a .fits.gz file.
Files that use compressed HDUs within the FITS file are discussed in Compressed Image Data.

There are some limitations with working with compressed files. For example with Zip files that contain multiple
compressed files, only the first file will be accessible. Also bzip does not support the append or update access modes.

When writing a file (e.g. with the writeto() function), compression will be determined based on the filename
extension given, or the compression used in a pre-existing file that is being written to.

1.4.2 Working with FITS Headers

As mentioned earlier, each element of an HDUList is an HDU object with .header and .data attributes, which
can be used to access the header and data portions of the HDU.

1.4. Reading and Updating Existing FITS Files 3

https://docs.python.org/2/library/functions.html#open
https://docs.python.org/2/library/functions.html#open

PyFITS Documentation, Release 3.4

For those unfamiliar with FITS headers, they consist of a list of 80 byte “cards”, where a card contains a keyword, a
value, and a comment. The keyword and comment must both be strings, whereas the value can be a string or an integer,
floating point number, complex number, or True/False. Keywords are usually unique within a header, except in a
few special cases.

The header attribute is a Header instance, another PyFITS object. To get the value associated with a header keyword,
simply do (a la Python dicts):

>>> hdulist[0].header['targname']
'NGC121'

to get the value of the keyword targname, which is a string ‘NGC121’.

Although keyword names are always in upper case inside the FITS file, specifying a keyword name with PyFITS is
case-insensitive, for the user’s convenience. If the specified keyword name does not exist, it will raise a KeyError
exception.

We can also get the keyword value by indexing (a la Python lists):

>>> hdulist[0].header[27]
96

This example returns the 28th (like Python lists, it is 0-indexed) keyword’s value–an integer–96.

Similarly, it is easy to update a keyword’s value in PyFITS, either through keyword name or index:

>>> prihdr = hdulist[0].header
>>> prihdr['targname'] = 'NGC121-a'
>>> prihdr[27] = 99

Please note however that almost all application code should update header values via their keyword name and not via
their positional index. This is because most FITS keywords may appear at any position in the header.

It is also possible to update both the value and comment associated with a keyword by assigning them as a tuple:

>>> prihdr = hdulist[0].header
>>> prihdr['targname'] = ('NGC121-a', 'the observation target')
>>> prihdr['targname']
'NGC121-a'
>>> prihdr.comments['targname']
'the observation target'

Like a dict, one may also use the above syntax to add a new keyword/value pair (and optionally a comment as well).
In this case the new card is appended to the end of the header (unless it’s a commentary keyword such as COMMENT
or HISTORY, in which case it is appended after the last card with that keyword).

Another way to either update an existing card or append a new one is to use the Header.set() method:

>>> prihdr.set('observer', 'Edwin Hubble')

Comment or history records are added like normal cards, though in their case a new card is always created, rather than
updating an existing HISTORY or COMMENT card:

>>> prihdr['history'] = 'I updated this file 2/26/09'
>>> prihdr['comment'] = 'Edwin Hubble really knew his stuff'
>>> prihdr['comment'] = 'I like using HST observations'
>>> prihdr['history']
I updated this file 2/26/09
>>> prihdr['comment']

4 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/exceptions.html#exceptions.KeyError

PyFITS Documentation, Release 3.4

Edwin Hubble really knew his stuff
I like using HST observations

Note: Be careful not to confuse COMMENT cards with the comment value for normal cards.

To updating existing COMMENT or HISTORY cards, reference them by index:

>>> prihdr['history'][0] = 'I updated this file on 2/27/09'
>>> prihdr['history']
I updated this file on 2/27/09
>>> prihdr['comment'][1] = 'I like using JWST observations'
>>> prihdr['comment']
Edwin Hubble really knew his stuff
I like using JWST observations

To see the entire header as it appears in the FITS file (with the END card and padding stripped), simply enter the
header object by itself, or print repr(header):

>>> header
SIMPLE = T / file does conform to FITS standard
BITPIX = 16 / number of bits per data pixel
NAXIS = 0 / number of data axes
...all cards are shown...
>>> print repr(header)
...identical...

Entering simply print header will also work, but may not be very legible on most displays, as this displays the
header as it is written in the FITS file itself, which means there are no linebreaks between cards. This is a common
confusion in new users of PyFITS.

It’s also possible to view a slice of the header:

>>> header[:2]
SIMPLE = T / file does conform to FITS standard
BITPIX = 16 / number of bits per data pixel

Only the first two cards are shown above.

To get a list of all keywords, use the Header.keys() method just as you would with a dict:

>>> prihdr.keys()
['SIMPLE', 'BITPIX', 'NAXIS', ...]

1.4.3 Working with Image Data

If an HDU’s data is an image, the data attribute of the HDU object will return a numpy ndarray object. Refer to the
numpy documentation for details on manipulating these numerical arrays.

>>> scidata = hdulist[1].data

Here, scidata points to the data object in the second HDU (the first HDU, hdulist[0], being the primary HDU)
which corresponds to the ‘SCI’ extension. Alternatively, you can access the extension by its extension name (specified
in the EXTNAME keyword):

>>> scidata = hdulist['SCI'].data

1.4. Reading and Updating Existing FITS Files 5

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

PyFITS Documentation, Release 3.4

If there is more than one extension with the same EXTNAME, the EXTVER value needs to be specified along with
the EXTNAME as a tuple; e.g.:

>>> scidata = hdulist['sci', 2].data

Note that the EXTNAME is also case-insensitive.

The returned numpy object has many attributes and methods for a user to get information about the array; e.g.

>>> scidata.shape
(800, 800)
>>> scidata.dtype.name
'float32'

Since image data is a numpy object, we can slice it, view it, and perform mathematical operations on it. To see the
pixel value at x=5, y=2:

>>> print scidata[1, 4]

Note that, like C (and unlike FORTRAN), Python is 0-indexed and the indices have the slowest axis first and fastest
changing axis last; i.e. for a 2-D image, the fast axis (X-axis) which corresponds to the FITS NAXIS1 keyword, is
the second index. Similarly, the 1-indexed sub-section of x=11 to 20 (inclusive) and y=31 to 40 (inclusive) would be
given in Python as:

>>> scidata[30:40, 10:20]

To update the value of a pixel or a sub-section:

>>> scidata[30:40, 10:20] = scidata[1, 4] = 999

This example changes the values of both the pixel [1, 4] and the sub-section [30:40, 10:20] to the new value of 999.
See the Numpy documentation for more details on Python-style array indexing and slicing.

The next example of array manipulation is to convert the image data from counts to flux:

>>> photflam = hdulist[1].header['photflam']
>>> exptime = prihdr['exptime']
>>> scidata *= photflam / exptime

Note that performing an operation like this on an entire image requires holding the entire image in memory. This
example performs the multiplication in-place so that no copies are made, but the original image must first be able to
fit in main memory. For most observations this should not be an issue on modern personal computers.

If at this point you want to preserve all the changes you made and write it to a new file, you can use the HDUList.
writeto() method (see below).

1.4.4 Working With Table Data

If you are familiar with numpy recarray (record array) objects, you will find the table data is basically a record
array with some extra properties. But familiarity with record arrays is not a prerequisite for this guide.

Like images, the data portion of a FITS table extension is in the .data attribute:

>>> hdulist = pyfits.open('table.fits')
>>> tbdata = hdulist[1].data # assuming the first extension is a table

To see the first row of the table:

6 Chapter 1. Introduction

http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray

PyFITS Documentation, Release 3.4

>>> print tbdata[0]
(1, 'abc', 3.7000002861022949, 0)

Each row in the table is a FITS_record object which looks like a (Python) tuple containing elements of heteroge-
neous data types. In this example: an integer, a string, a floating point number, and a Boolean value. So the table data
are just an array of such records. More commonly, a user is likely to access the data in a column-wise way. This is
accomplished by using the field() method. To get the first column (or “field” in Numpy parlance–it is used here
interchangeably with “column”) of the table, use:

>>> tbdata.field(0)
array([1, 2])

A numpy object with the data type of the specified field is returned.

Like header keywords, a column can be referred either by index, as above, or by name:

>>> tbdata.field('id')
array([1, 2])

When accessing a column by name, dict-like access is also possible (and even preferable):

>>> tbdata['id']
array([1, 2])

In most cases it is preferable to access columns by their name, as the column name is entirely independent of its
physical order in the table. As with header keywords, column names are case-insensitive.

But how do we know what columns we have in a table? First, let’s introduce another attribute of the table HDU: the
columns attribute:

>>> cols = hdulist[1].columns

This attribute is a ColDefs (column definitions) object. If we use the ColDefs.info() method from the interac-
tive prompt:

>>> cols.info()
name:

['c1', 'c2', 'c3', 'c4']
format:

['1J', '3A', '1E', '1L']
unit:

['', '', '', '']
null:

[-2147483647, '', '', '']
bscale:

['', '', 3, '']
bzero:

['', '', 0.40000000000000002, '']
disp:

['I11', 'A3', 'G15.7', 'L6']
start:

['', '', '', '']
dim:

['', '', '', '']

it will show the attributes of all columns in the table, such as their names, formats, bscales, bzeros, etc. A similar
output that will display the column names and their formats can be printed from within a script with:

1.4. Reading and Updating Existing FITS Files 7

PyFITS Documentation, Release 3.4

print hdulist[1].columns

We can also get these properties individually; e.g.

>>> cols.names
['ID', 'name', 'mag', 'flag']

returns a (Python) list of field names.

Since each field is a numpy object, we’ll have the entire arsenal of Numpy tools to use. We can reassign (update) the
values:

>>> tbdata.['flag'][:] = 0

take the mean of a column:

>>> tbdata['mag'].mean()
>>> 84.4

and so on.

1.4.5 Save File Changes

As mentioned earlier, after a user opened a file, made a few changes to either header or data, the user can use
HDUList.writeto() to save the changes. This takes the version of headers and data in memory and writes
them to a new FITS file on disk. Subsequent operations can be performed to the data in memory and written out to yet
another different file, all without recopying the original data to (more) memory.

>>> hdulist.writeto('newimage.fits')

will write the current content of hdulist to a new disk file newfile.fits. If a file was opened with the update mode,
the HDUList.flush() method can also be used to write all the changes made since open(), back to the original
file. The close() method will do the same for a FITS file opened with update mode:

>>> f = pyfits.open('original.fits', mode='update')
... # making changes in data and/or header
>>> f.flush() # changes are written back to original.fits
>>> f.close() # closing the file will also flush any changes and prevent
... # further writing

1.5 Creating a New FITS File

1.5.1 Creating a New Image File

So far we have demonstrated how to read and update an existing FITS file. But how about creating a new FITS file
from scratch? Such task is very easy in PyFITS for an image HDU. We’ll first demonstrate how to create a FITS file
consisting only the primary HDU with image data.

First, we create a numpy object for the data part:

>>> import numpy as np
>>> n = np.arange(100.0) # a simple sequence of floats from 0.0 to 99.9

8 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

Next, we create a PrimaryHDU object to encapsulate the data:

>>> hdu = pyfits.PrimaryHDU(n)

We then create a HDUList to contain the newly created primary HDU, and write to a new file:

>>> hdulist = pyfits.HDUList([hdu])
>>> hdulist.writeto('new.fits')

That’s it! In fact, PyFITS even provides a short cut for the last two lines to accomplish the same behavior:

>>> hdu.writeto('new.fits')

This will write a single HDU to a FITS file without having to manually encapsulate it in an HDUList object first.

1.5.2 Creating a New Table File

To create a table HDU is a little more involved than image HDU, because a table’s structure needs more information.
First of all, tables can only be an extension HDU, not a primary. There are two kinds of FITS table extensions: ASCII
and binary. We’ll use binary table examples here.

To create a table from scratch, we need to define columns first, by constructing the Column objects and their data.
Suppose we have two columns, the first containing strings, and the second containing floating point numbers:

>>> import pyfits
>>> import numpy as np
>>> a1 = np.array(['NGC1001', 'NGC1002', 'NGC1003'])
>>> a2 = np.array([11.1, 12.3, 15.2])
>>> col1 = pyfits.Column(name='target', format='20A', array=a1)
>>> col2 = pyfits.Column(name='V_mag', format='E', array=a2)

Next, create a ColDefs (column-definitions) object for all columns:

>>> cols = pyfits.ColDefs([col1, col2])

Now, create a new binary table HDU object by using the PyFITS function BinTableHDU.from_columns():

>>> tbhdu = pyfits.BinTableHDU.from_columns(cols)

This function returns (in this case) a BinTableHDU.

Of course, you can do this more concisely without creating intermediate variables for the individual columns and
without manually creating a ColDefs object:

>>> tbhdu = pyfits.BinTableHDU.from_columns([
... pyfits.Column(name='target', format='20A', array=a1),
... pyfits.Column(name='V_mag', format='E', array=a2)])

Now you may write this new table HDU directly to a FITS file like so:

>>> tbhdu.writeto('table.fits')

This shortcut will automatically create a minimal primary HDU with no data and prepend it to the table HDU to
create a valid FITS file. If you require additional data or header keywords in the primary HDU you may still create a
PrimaryHDU object and build up the FITS file manually using an HDUList.

For example, first create a new Header object to encapsulate any keywords you want to include in the primary HDU,
then as before create a PrimaryHDU:

1.5. Creating a New FITS File 9

PyFITS Documentation, Release 3.4

>>> prihdr = pyfits.Header()
>>> prihdr['OBSERVER'] = 'Edwin Hubble'
>>> prihdr['COMMENT'] = "Here's some commentary about this FITS file."
>>> prihdu = pyfits.PrimaryHDU(header=prihdr)

When we create a new primary HDU with a custom header as in the above example, this will automatically include
any additional header keywords that are required by the FITS format (keywords such as SIMPLE and NAXIS for
example). In general, PyFITS users should not have to manually manage such keywords, and should only create and
modify observation-specific informational keywords.

We then create a HDUList containing both the primary HDU and the newly created table extension, and write to a new
file:

>>> thdulist = pyfits.HDUList([prihdu, tbhdu])
>>> thdulist.writeto('table.fits')

Alternatively, we can append the table to the HDU list we already created in the image file section:

>>> hdulist.append(tbhdu)
>>> hdulist.writeto('image_and_table.fits')

The data structure used to represent FITS tables is called a FITS_rec and is derived from the numpy.recarray
interface. When creating a new table HDU the individual column arrays will be assembled into a single FITS_rec
array.

So far, we have covered the most basic features of PyFITS. In the following chapters we’ll show more advanced
examples and explain options in each class and method.

1.6 Convenience Functions

PyFITS also provides several high level (“convenience”) functions. Such a convenience function is a “canned” opera-
tion to achieve one simple task. By using these “convenience” functions, a user does not have to worry about opening
or closing a file, all the housekeeping is done implicitly.

Warning: These functions are useful for interactive Python sessions and simple analysis scripts, but should not be
used for application code, as they are highly inefficient. For example, each call to getval() requires re-parsing
the entire FITS file. Code that makes repeated use of these functions should instead open the file with open()
and access the data structures directly.

The first of these functions is getheader(), to get the header of an HDU. Here are several examples of getting the
header. Only the file name is required for this function. The rest of the arguments are optional and flexible to specify
which HDU the user wants to access:

>>> from pyfits import getheader
>>> getheader('in.fits') # get default HDU (=0), i.e. primary HDU's header
>>> getheader('in.fits', 0) # get primary HDU's header
>>> getheader('in.fits', 2) # the second extension
>>> getheader('in.fits', 'sci') # the first HDU with EXTNAME='SCI'
>>> getheader('in.fits', 'sci', 2) # HDU with EXTNAME='SCI' and EXTVER=2
>>> getheader('in.fits', ('sci', 2)) # use a tuple to do the same
>>> getheader('in.fits', ext=2) # the second extension
>>> getheader('in.fits', extname='sci') # first HDU with EXTNAME='SCI'
>>> getheader('in.fits', extname='sci', extver=2)

10 Chapter 1. Introduction

https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray
https://docs.python.org/2/library/functions.html#open

PyFITS Documentation, Release 3.4

Ambiguous specifications will raise an exception:

>>> getheader('in.fits', ext=('sci', 1), extname='err', extver=2)
...
TypeError: Redundant/conflicting extension arguments(s): {'ext': ('sci',
1), 'args': (), 'extver': 2, 'extname': 'err'}

After you get the header, you can access the information in it, such as getting and modifying a keyword value:

>>> from pyfits import getheader
>>> hdr = getheader('in.fits', 1) # get first extension's header
>>> filter = hdr['filter'] # get the value of the keyword "filter'
>>> val = hdr[10] # get the 11th keyword's value
>>> hdr['filter'] = 'FW555' # change the keyword value

For the header keywords, the header is like a dictionary, as well as a list. The user can access the keywords either by
name or by numeric index, as explained earlier in this chapter.

If a user only needs to read one keyword, the getval() function can further simplify to just one call, instead of two
as shown in the above examples:

>>> from pyfits import getval
>>> flt = getval('in.fits', 'filter', 1) # get 1st extension's FILTER
>>> val = getval('in.fits', 10, 'sci', 2) # get the value 2nd SCI
... # extension's 11th keyword

The function getdata() gets the data of an HDU. Similar to getheader(), it only requires the input FITS file
name while the extension is specified through the optional arguments. It does have one extra optional argument header.
If header is set to True, this function will return both data and header, otherwise only data is returned:

>>> from pyfits import getdata
>>> dat = getdata('in.fits', 'sci', 3) # get 3rd sci extension's data
... # get 1st extension's data and header
>>> data, hdr = getdata('in.fits', 1, header=True)

The functions introduced above are for reading. The next few functions demonstrate convenience functions for writing:

>>> pyfits.writeto('out.fits', data, header)

The writeto() function uses the provided data and an optional header to write to an output FITS file.

>>> pyfits.append('out.fits', data, header)

The append() function will use the provided data and the optional header to append to an existing FITS file. If the
specified output file does not exist, it will create one.

>>> from pyfits import update
>>> update(file, dat, hdr, 'sci') # update the 'sci' extension
>>> update(file, dat, 3) # update the 3rd extension
>>> update(file, dat, hdr, 3) # update the 3rd extension
>>> update(file, dat, 'sci', 2) # update the 2nd SCI extension
>>> update(file, dat, 3, header=hdr) # update the 3rd extension
>>> update(file, dat, header=hdr, ext=5) # update the 5th extension

The update() function will update the specified extension with the input data/header. The 3rd argument can be the
header associated with the data. If the 3rd argument is not a header, it (and other positional arguments) are assumed to
be the extension specification(s). Header and extension specs can also be keyword arguments.

Finally, the info() function will print out information of the specified FITS file:

1.6. Convenience Functions 11

PyFITS Documentation, Release 3.4

>>> pyfits.info('test0.fits')
Filename: test0.fits
No. Name Type Cards Dimensions Format
0 PRIMARY PrimaryHDU 138 () Int16
1 SCI ImageHDU 61 (400, 400) Int16
2 SCI ImageHDU 61 (400, 400) Int16
3 SCI ImageHDU 61 (400, 400) Int16
4 SCI ImageHDU 61 (400, 400) Int16

This is one of the most useful convenience functions for getting an overview of what a given file contains without
looking at any of the details.

1.7 Users Guide

1.7.1 FITS Headers

In the next three chapters, more detailed information as well as examples will be explained for manipulating FITS
headers, image/array data, and table data respectively.

Note: The Header interface was significantly reworked in PyFITS 3.1. This documentation addresses the interface as
it works in PyFITS 3.1, though should still be mostly the same for earlier PyFITS versions. See the Header Interface
Transition Guide for a complete detailing on the difference between PyFITS 3.1 and the earlier Header interface. This
guide may also be useful to advanced users wishing to better understand how the Header interface is implemented.

Header of an HDU

Every HDU normally has two components: header and data. In PyFITS these two components are accessed through
the two attributes of the HDU, hdu.header and hdu.data.

While an HDU may have empty data, i.e. the .data attribute is None, any HDU will always have a header. When an
HDU is created with a constructor, e.g. hdu = PrimaryHDU(data, header), the user may supply the header
value from an existing HDU’s header and the data value from a numpy array. If the defaults (None) are used, the new
HDU will have the minimal required keywords for an HDU of that type:

>>> hdu = pyfits.PrimaryHDU()
>>> hdu.header # show the all of the header cards
SIMPLE = T / conforms to FITS standard
BITPIX = 8 / array data type
NAXIS = 0 / number of array dimensions
EXTEND = T

A user can use any header and any data to construct a new HDU. PyFITS will strip any keywords that describe the
data structure leaving only your informational keywords. Later it will add back in the required structural keywords for
compatibility with the new HDU and any data added to it. So, a user can use a table HDU’s header to construct an
image HDU and vice versa. The constructor will also ensure the data type and dimension information in the header
agree with the data.

12 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#None

PyFITS Documentation, Release 3.4

The Header Attribute

Value Access, Updating, and Creating

As shown in the Quick Tutorial, keyword values can be accessed via keyword name or index of an HDU’s header
attribute. Here is a quick summary:

>>> hdulist = pyfits.open('input.fits') # open a FITS file
>>> prihdr = hdulist[0].header # the primary HDU header
>>> print prihdr[3] # get the 4th keyword's value
10
>>> prihdr[3] = 20 # change its value
>>> prihdr['DARKCORR'] # get the value of the keyword 'darkcorr'
'OMIT'
>>> prihdr['darkcorr'] = 'PERFORM' # change darkcorr's value

Keyword names are case-insenstive except in a few special cases (see the sections on HIERARCH card and record-
valued cards). Thus, prihdr['abc'], prihdr['ABC'], or prihdr['aBc'] are all equivalent.

Like with Python’s dict type, new keywords can also be added to the header using assignment syntax:

>>> 'DARKCORR' in header # Check for existence
False
>>> header['DARKCORR'] = 'OMIT' # Add a new DARKCORR keyword

You can also add a new value and comment by assigning them as a tuple:

>>> header['DARKCORR'] = ('OMIT', 'Dark Image Subtraction')

Note: An important point to note when adding new keywords to a header is that by default they are not appended
immediately to the end of the file. Rather, they are appended to the last non-commentary keyword. This is in order to
support the common use case of always having all HISTORY keywords grouped together at the end of a header. A new
non-commentary keyword will be added at the end of the existing keywords, but before any HISTORY/COMMENT
keywords at the end of the header.

There are a couple of ways to override this functionality:

• Use the Header.append() method with the end=True argument:

>>> header.append(('DARKCORR', 'OMIT', 'Dark Image Subtraction'),
end=True)

This forces the new keyword to be added at the actual end of the header.

• The Header.insert() method will always insert a new keyword exactly where you ask for it:

>>> header.insert(20, ('DARKCORR', 'OMIT', 'Dark Image Subtraction'))

This inserts the DARKCORR keyword before the 20th keyword in the header no matter what it is.

A keyword (and its corresponding card) can be deleted using the same index/name syntax:

>>> del prihdr[3] # delete the 2nd keyword
>>> del prihdr['abc'] # get the value of the keyword 'abc'

Note that, like a regular Python list, the indexing updates after each delete, so if del prihdr[3] is done two times
in a row, the 4th and 5th keywords are removed from the original header. Likewise, del prihdr[-1] will delete
the last card in the header.

1.7. Users Guide 13

https://docs.python.org/2/library/stdtypes.html#dict

PyFITS Documentation, Release 3.4

It is also possible to delete an entire range of cards using the slice syntax:

>>> del prihdr[3:5]

The method Header.set() is another way to update they value or comment associated with an existing keyword,
or to create a new keyword. Most of its functionality can be duplicated with the dict-like syntax shown above. But in
some cases it might be more clear. It also has the advantage of allowing one to either move cards within the header, or
specify the location of a new card relative to existing cards:

>>> prihdr.set('target', 'NGC1234', 'target name')
>>> # place the next new keyword before the 'TARGET' keyword
>>> prihdr.set('newkey', 666, before='TARGET') # comment is optional
>>> # place the next new keyword after the 21st keyword
>>> prihdr.set('newkey2', 42.0, 'another new key', after=20)

In FITS headers, each keyword may also have a comment associated with it explaining its purpose. The comments
associated with each keyword are accessed through the comments attribute:

>>> header['NAXIS']
2
>>> header.comments['NAXIS']
the number of image axes
>>> header.comments['NAXIS'] = 'The number of image axes' # Update

Comments can be accessed in all the same ways that values are accessed, whether by keyword name or card index.
Slices are also possible. The only difference is that you go through header.comments instead of just header by
itself.

COMMENT, HISTORY, and Blank Keywords

Most keywords in a FITS header have unique names. If there are more than two cards sharing the same name, it is the
first one accessed when referred by name. The duplicates can only be accessed by numeric indexing.

There are three special keywords (their associated cards are sometimes referred to as commentary cards), which
commonly appear in FITS headers more than once. They are (1) blank keyword, (2) HISTORY, and (3) COMMENT.
Unlike other keywords, when accessing these keywords they are returned as a list:

>>> prihdr['HISTORY']
I updated this file on 02/03/2011
I updated this file on 02/04/2011
....

These lists can be sliced like any other list. For example, to diplay just the last HISTORY entry, use
prihdr['history'][-1]. Existing commentary cards can also be updated by using the appropriate index num-
ber for that card.

New commentary cards can be added like any other card by using the dict-like keyword assignment syntax, or by
using the Header.set() method. However, unlike with other keywords, a new commentary card is always added
and appended to the last commentary card with the same keyword, rather than to the end of the header. Here is an
example:

>>> hdu.header['HISTORY'] = 'history 1'
>>> hdu.header[''] = 'blank 1'
>>> hdu.header['COMMENT'] = 'comment 1'
>>> hdu.header['HISTORY'] = 'history 2'
>>> hdu.header[''] = 'blank 2'
>>> hdu.header['COMMENT'] = 'comment 2'

14 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

and the part in the modified header becomes:

HISTORY history 1
HISTORY history 2

blank 1
blank 2

COMMENT comment 1
COMMENT comment 2

Users can also directly control exactly where in the header to add a new commentary card by using the Header.
insert() method.

Note: Ironically, there is no comment in a commentary card, only a string value.

Keyword Wildcards

Some operations on header keywords also work on keyword wildcard patterns similar to those used to match files in a
command shell–the character '?' may be used to match a single unknown character, and '*' may be used to match
zero or more characters. For example:

>>> header = pyfits.Header([('SIMPLE', True), ('NAXIS', 2),
... ('NAXIS1', 1000), ('NAXIS2', 2000)])
>>> header
SIMPLE = T
NAXIS = 2
NAXIS1 = 1000
NAXIS2 = 2000
>>> header['NAXIS*']
NAXIS = 2
NAXIS1 = 1000
NAXIS2 = 2000

The object from the above example is a new Header object containing only the cards that match the wildcard pattern.
It can be thought of like slicing a list, only the slice is non-linear. To return only the cards with NAXISn keywords
(that is, “NAXIS” followed by one or more characters):

>>> header['NAXIS?*']
NAXIS1 = 1000
NAXIS2 = 2000

Wildcards also work for assignment and deletion:

>>> header['NAXIS?*'] = 3000
>>> header
SIMPLE = T
NAXIS = 2
NAXIS1 = 3000
NAXIS2 = 3000
>>> del header['NAXIS?*']
>>> header
SIMPLE = T
NAXIS = 2

1.7. Users Guide 15

PyFITS Documentation, Release 3.4

Card Images

A FITS header consists of card images.

A card image in a FITS header consists of a keyword name, a value, and optionally a comment. Physically, it takes
80 columns (bytes)–without carriage return–in a FITS file’s storage format. In PyFITS, each card image is manifested
by a Card object. There are also special kinds of cards: commentary cards (see above) and card images taking more
than one 80-column card image. The latter will be discussed later.

Most of the time the details of dealing with cards are handled by the Header object, and it is not necessary to directly
manipulate cards. In fact, most Header methods that accept a (keyword, value) or (keyword, value,
comment) tuple as an argument can also take a Card object as an argument. Card objects are just wrappers around
such tuples that provide the logic for parsing and formatting individual cards in a header. But there’s usually nothing
gained by manually using a Card object, except to examine how a card might appear in a header before actually
adding it to the header.

A new Card object is created with the Card constructor: Card(key, value, comment). For example:

>>> c1 = pyfits.Card('TEMP', 80.0, 'temperature, floating value')
>>> c2 = pyfits.Card('DETECTOR', 1) # comment is optional
>>> c3 = pyfits.Card('MIR_REVR', True, 'mirror reversed? Boolean value')
>>> c4 = pyfits.Card('ABC', 2+3j, 'complex value')
>>> c5 = pyfits.Card('OBSERVER', 'Hubble', 'string value')

>>> print c1; print c2; print c3; print c4; print c5 # show the cards
TEMP = 80.0 / temperature, floating value
DETECTOR= 1 /
MIR_REVR= T / mirror reversed? Boolean value
ABC = (2.0, 3.0) / complex value
OBSERVER= 'Hubble ' / string value

Cards have the attributes .keyword, .value, and .comment. Both .value and .comment can be changed but
not the .keyword attribute. In other words, once a card is created, it is created for a specific, immutable keyword.

The Card() constructor will check if the arguments given are conforming to the FITS standard and has a fixed card
image format. If the user wants to create a card with a customized format or even a card which is not conforming to
the FITS standard (e.g. for testing purposes), the Card.fromstring() class method can be used.

Cards can be verified with Card.verify(). The non-standard card c2 in the example below is flagged by such
verification. More about verification in PyFITS will be discussed in a later chapter.

>>> c1 = pyfits.Card.fromstring('ABC = 3.456D023')
>>> c2 = pyfits.Card.fromstring("P.I. ='Hubble'")
>>> print c1; print c2
ABC = 3.456D023
P.I. ='Hubble'
>>> c2.verify()
Output verification result:
Unfixable error: Illegal keyword name 'P.I.'

A list of the Card objects underlying a Header object can be accessed with the Header.cards attribute. This list
is only meant for observing, and should not be directly manipulated. In fact, it is only a copy–modifications to it will
not affect the header it came from. Use the methods provided by the Header class instead.

CONTINUE Cards

The fact that the FITS standard only allows up to 8 characters for the keyword name and 80 characters to contain the
keyword, the value, and the comment is restrictive for certain applications. To allow long string values for keywords,

16 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

a proposal was made in:

http://legacy.gsfc.nasa.gov/docs/heasarc/ofwg/docs/ofwg_recomm/r13.html

by using the CONTINUE keyword after the regular 80-column containing the keyword. PyFITS does support this
convention, even though it is not a FITS standard. The examples below show the use of CONTINUE is automatic for
long string values:

>>> header = pyfits.Header()
>>> header['abc'] = 'abcdefg' * 20
>>> header
ABC = 'abcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcd&'
CONTINUE 'efgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefga&'
CONTINUE 'bcdefg&'
>>> header['abc']

→˓'abcdefg
→˓'
>>> # both value and comments are long
>>> header['abc'] = ('abcdefg' * 10, 'abcdefg' * 10)
>>> header
ABC = 'abcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcd&'
CONTINUE 'efg&'
CONTINUE '&' / abcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefga
CONTINUE '&' / bcdefg

Note that when a CONTINUE card is used, at the end of each 80-characters card image, an ampersand is present.
The ampersand is not part of the string value. Also, there is no “=” at the 9th column after CONTINUE. In the first
example, the entire 240 characters is treated by PyFITS as a single card. So, if it is the nth card in a header, the (n+1)th
card refers to the next keyword, not the next CONTINUE card. As such, CONTINUE cards are transparently handled
by PyFITS as a single logical card, and it’s generally not necessary to worry about the details of the format. Keywords
that resolve to a set of CONTINUE cards can be accessed and updated just like regular keywords.

HIERARCH Cards

For keywords longer than 8 characters, there is a convention originated at ESO to facilitate such use. It uses a special
keyword HIERARCH with the actual long keyword following. PyFITS supports this convention as well.

If a keyword contains more than 8 characters PyFITS will automatically use a HIERARCH card, but will also issue a
warning in case this is in error. However, one may explicitly request a HIERARCH card by prepending the keyword
with ‘HIERARCH ‘ (just as it would appear in the header). For example, header['HIERARCH abcdefghi']
will create the keyword abcdefghi without displaying a warning. Once created, HIERARCH keywords can be ac-
cessed like any other: header['abcdefghi'], without prepending ‘HIERARCH’ to the keyword. HIEARARCH
keywords also differ from normal FITS keywords in that they are case-sensitive.

Examples follow:

>>> c = pyfits.Card('abcdefghi', 10)
Keyword name 'abcdefghi' is greater than 8 characters; a HIERARCH card will
be created.
>>> print c
HIERARCH abcdefghi = 10
>>> c = pyfits.Card('hierarch abcdefghi', 10)
>>> print c
HIERARCH abcdefghi = 10
>>> h = pyfits.PrimaryHDU()
>>> h.header['hierarch abcdefghi'] = 99
>>> h.header['abcdefghi']

1.7. Users Guide 17

http://legacy.gsfc.nasa.gov/docs/heasarc/ofwg/docs/ofwg_recomm/r13.html

PyFITS Documentation, Release 3.4

99
>>> h.header['abcdefghi'] = 10
>>> h.header['abcdefghi']
10
>>> h.header['ABCDEFGHI']
Traceback (most recent call last):
...
KeyError: "Keyword 'ABCDEFGI.' not found."
>>> h.header
SIMPLE = T / conforms to FITS standard
BITPIX = 8 / array data type
NAXIS = 0 / number of array dimensions
EXTEND = T
HIERARCH abcdefghi = 1000

Note: A final point to keep in mind about the Header class is that much of its design is intended to abstract away
quirks about the FITS format. This is why, for example, it will automatically created CONTINUE and HIEARARCH
cards. The Header is just a data structure, and as user you shouldn’t have to worry about how it ultimately gets
serialized to a header in a FITS file.

Though there are some areas where it’s almost impossible to hide away the quirks of the FITS format, PyFITS tries to
make it so that you have to think about it as little as possible. If there are any areas where you have concern yourself
unncessarily about how the header is constructed, then let help@stsci.edu know, as there are probably areas where this
can be improved on even more.

1.7.2 Image Data

In this chapter, we’ll discuss the data component in an image HDU.

Image Data as an Array

A FITS primary HDU or an image extension HDU may contain image data. The following discussions apply to both
of these HDU classes. In PyFITS, for most cases, it is just a simple numpy array, having the shape specified by the
NAXIS keywords and the data type specified by the BITPIX keyword - unless the data is scaled, see next section. Here
is a quick cross reference between allowed BITPIX values in FITS images and the numpy data types:

BITPIX Numpy Data Type
8 numpy.uint8 (note it is UNsigned integer)
16 numpy.int16
32 numpy.int32
-32 numpy.float32
-64 numpy.float64

To recap the fact that in numpy the arrays are 0-indexed and the axes are ordered from slow to fast. So, if a FITS image
has NAXIS1=300 and NAXIS2=400, the numpy array of its data will have the shape of (400, 300).

Here is a summary of reading and updating image data values:

>>> f = pyfits.open('image.fits') # open a FITS file
>>> scidata = f[1].data # assume the first extension is an image
>>> print scidata[1,4] # get the pixel value at x=5, y=2
>>> scidata[30:40, 10:20] # get values of the subsection
... # from x=11 to 20, y=31 to 40 (inclusive)

18 Chapter 1. Introduction

mailto:help@stsci.edu

PyFITS Documentation, Release 3.4

>>> scidata[1,4] = 999 # update a pixel value
>>> scidata[30:40, 10:20] = 0 # update values of a subsection
>>> scidata[3] = scidata[2] # copy the 3rd row to the 4th row

Here are some more complicated examples by using the concept of the “mask array”. The first example is to change
all negative pixel values in scidata to zero. The second one is to take logarithm of the pixel values which are positive:

>>> scidata[scidata < 0] = 0
>>> scidata[scidata > 0] = numpy.log(scidata[scidata > 0])

These examples show the concise nature of numpy array operations.

Scaled Data

Sometimes an image is scaled, i.e. the data stored in the file is not the image’s physical (true) values, but linearly
transformed according to the equation:

physical value = BSCALE * (storage value) + BZERO

BSCALE and BZERO are stored as keywords of the same names in the header of the same HDU. The most common
use of scaled image is to store unsigned 16-bit integer data because FITS standard does not allow it. In this case, the
stored data is signed 16-bit integer (BITPIX=16) with BZERO=32768 (215), BSCALE=1.

Reading Scaled Image Data

Images are scaled only when either of the BSCALE/BZERO keywords are present in the header and either of their
values is not the default value (BSCALE=1, BZERO=0).

For unscaled data, the data attribute of an HDU in PyFITS is a numpy array of the same data type specified by the
BITPIX keyword. For scaled image, the .data attribute will be the physical data, i.e. already transformed from the
storage data and may not be the same data type as prescribed in BITPIX. This means an extra step of copying is needed
and thus the corresponding memory requirement. This also means that the advantage of memory mapping is reduced
for scaled data.

For floating point storage data, the scaled data will have the same data type. For integer data type, the scaled data
will always be single precision floating point (numpy.float32). Here is an example of what happens to such a file,
before and after the data is touched:

>>> f = pyfits.open('scaled_uint16.fits')
>>> hdu = f[1]
>>> print hdu.header['bitpix'], hdu.header['bzero']
16 32768
>>> print hdu.data # once data is touched, it is scaled
[11. 12. 13. 14. 15.]
>>> hdu.data.dtype.name
'float32'
>>> print hdu.header['bitpix'] # BITPIX is also updated
-32
>>> # BZERO and BSCALE are removed after the scaling
>>> print hdu.header['bzero']
KeyError: "Keyword 'bzero' not found."

Warning: An important caveat to be aware of when dealing with scaled data in PyFITS, is that when accessing
the data via the .data attribute, the data is automatically scaled with the BZERO and BSCALE parameters. If the
file was opened in “update” mode, it will be saved with the rescaled data. This surprising behavior is a compromise

1.7. Users Guide 19

PyFITS Documentation, Release 3.4

to err on the side of not losing data: If some floating point calculations were made on the data, rescaling it when
saving could result in a loss of information.

To prevent this automatic scaling, open the file with the do_not_scale_image_data=True argument to
pyfits.open(). This is especially useful for updating some header values, while ensuring that the data is not
modified.

One may also manually reapply scale parameters by using hdu.scale() (see below). Alternately, one may open
files with the scale_back=True argument. This assures that the original scaling is preserved when saving even
when the physical values are updated. In other words, it reapplies the scaling to the new physical values upon
saving.

Writing Scaled Image Data

With the extra processing and memory requirement, we discourage use of scaled data as much as possible. However,
PyFITS does provide ways to write scaled data with the scale method. Here are a few examples:

>>> # scale the data to Int16 with user specified bscale/bzero
>>> hdu.scale('int16', bzero=32768)
>>> # scale the data to Int32 with the min/max of the data range
>>> hdu.scale('int32', 'minmax')
>>> # scale the data, using the original BSCALE/BZERO
>>> hdu.scale('int32', 'old')

The first example above shows how to store an unsigned short integer array.

Great caution must be exercised when using the scale() method. The data attribute of an image HDU, after the
scale() call, will become the storage values, not the physical values. So, only call scale() just before writing
out to FITS files, i.e. calls of writeto(), flush(), or close(). No further use of the data should be exercised.
Here is an example of what happens to the data attribute after the scale() call:

>>> hdu = pyfits.PrimaryHDU(numpy.array([0., 1, 2, 3]))
>>> print hdu.data
[0. 1. 2. 3.]
>>> hdu.scale('int16', bzero=32768)
>>> print hdu.data # now the data has storage values
[-32768 -32767 -32766 -32765]
>>> hdu.writeto('new.fits')

Data Sections

When a FITS image HDU’s data is accessed, either the whole data is copied into memory (in cases of NOT using
memory mapping or if the data is scaled) or a virtual memory space equivalent to the data size is allocated (in the case
of memory mapping of non-scaled data). If there are several very large image HDUs being accessed at the same time,
the system may run out of memory.

If a user does not need the entire image(s) at the same time, e.g. processing images(s) ten rows at a time, the section
attribute of an HDU can be used to alleviate such memory problems.

With PyFITS’ improved support for memory-mapping, the sections feature is not as necessary as it used to be for
handling very large images. However, if the image’s data is scaled with non-trivial BSCALE/BZERO values, accessing
the data in sections may still be necessary under the current implementation. Memmap is also insufficient for loading
images larger than 2 to 4 GB on a 32-bit system–in such cases it may be necessary to use sections.

Here is an example of getting the median image from 3 input images of the size 5000x5000:

20 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

>>> f1 = pyfits.open('file1.fits')
>>> f2 = pyfits.open('file2.fits')
>>> f3 = pyfits.open('file3.fits')
>>> output = numpy.zeros(5000 * 5000)
>>> for i in range(50):
... j = i * 100
... k = j + 100
... x1 = f1[1].section[j:k,:]
... x2 = f2[1].section[j:k,:]
... x3 = f3[1].section[j:k,:]
... # use scipy.stsci.image's median function
... output[j:k] = image.median([x1, x2, x3])

Data in each section does not need to be contiguous for memory savings to be possible. PyFITS will do its best to
join together discontiguous sections of the array while reading as little as possible into main memory.

Sections cannot currently be assigned to. Any modifications made to a data section are not saved back to the original
file.

1.7.3 Table Data

In this chapter, we’ll discuss the data component in a table HDU. A table will always be in an extension HDU, never
in a primary HDU.

There are two kinds of table in the FITS standard: binary tables and ASCII tables. Binary tables are more economical
in storage and faster in data access and manipulation. ASCII tables store the data in a “human readable” form and
therefore take up more storage space as well as more processing time since the ASCII text needs to be parsed into
numerical values.

Table Data as a Record Array

What is a Record Array?

A record array is an array which contains records (i.e. rows) of heterogeneous data types. Record arrays are available
through the records module in the numpy library. Here is a simple example of record array:

>>> from numpy import rec
>>> bright = rec.array([(1,'Sirius', -1.45, 'A1V'),
... (2,'Canopus', -0.73, 'F0Ib'),
... (3,'Rigil Kent', -0.1, 'G2V')],
... formats='int16,a20,float32,a10',
... names='order,name,mag,Sp')

In this example, there are 3 records (rows) and 4 fields (columns). The first field is a short integer, second a character
string (of length 20), third a floating point number, and fourth a character string (of length 10). Each record has the
same (heterogeneous) data structure.

The underlying data structure used for FITS tables is a class called FITS_rec which is a specialized subclass
of numpy.recarray. A FITS_rec can be instantiated directly using the same initialization format presented
for plain recarrays as in the example above. One may also instantiate a new FITS_rec from a list of PyFITS
Column objects using the FITS_rec.from_columns() class method. This has the exact same semantics as
BinTableHDU.from_columns() and TableHDU.from_columns(), except that it only returns an actual
FITS_rec array and not a whole HDU object.

1.7. Users Guide 21

https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray

PyFITS Documentation, Release 3.4

Metadata of a Table

The data in a FITS table HDU is basically a record array, with added attributes. The metadata, i.e. information
about the table data, are stored in the header. For example, the keyword TFORM1 contains the format of the first
field, TTYPE2 the name of the second field, etc. NAXIS2 gives the number of records(rows) and TFIELDS gives
the number of fields (columns). For FITS tables, the maximum number of fields is 999. The data type specified in
TFORM is represented by letter codes for binary tables and a FORTRAN-like format string for ASCII tables. Note
that this is different from the format specifications when constructing a record array.

Reading a FITS Table

Like images, the .data attribute of a table HDU contains the data of the table. To recap, the simple example in the
Quick Tutorial:

>>> f = pyfits.open('bright_stars.fits') # open a FITS file
>>> tbdata = f[1].data # assume the first extension is a table
>>> print tbdata[:2] # show the first two rows
[(1, 'Sirius', -1.4500000476837158, 'A1V'),
(2, 'Canopus', -0.73000001907348633, 'F0Ib')]

>>> print tbdata['mag'] # show the values in field "mag"
[-1.45000005 -0.73000002 -0.1]
>>> print tbdata.field(1) # columns can be referenced by index too
['Sirius' 'Canopus' 'Rigil Kent']

Note that in PyFITS, when using the field() method, it is 0-indexed while the suffixes in header keywords, such
as TFORM is 1-indexed. So, tbdata.field(0) is the data in the column with the name specified in TTYPE1 and
format in TFORM1.

Warning: The FITS format allows table columns with a zero-width data format, such as '0D'. This is prob-
ably intended as a space-saving measure on files in which that column contains no data. In such files, the zero-
width columns are ommitted when accessing the table data, so the indexes of fields might change when using the
field() method. For this reason, if you expect to encounter files containing zero-width columns it is recom-
mended to access fields by name rather than by index.

Table Operations

Selecting Records in a Table

Like image data, we can use the same “mask array” idea to pick out desired records from a table and make a new table
out of it.

In the next example, assuming the table’s second field having the name ‘magnitude’, an output table containing all the
records of magnitude > 5 from the input table is generated:

>>> import pyfits
>>> t = pyfits.open('table.fits')
>>> tbdata = t[1].data
>>> mask = tbdata.['magnitude'] > 5
>>> newtbdata = tbdata[mask]
>>> hdu = pyfits.BinTableHDU(data=newtbdata)
>>> hdu.writeto('newtable.fits')

Merging Tables

Merging different tables is straightforward in PyFITS. Simply merge the column definitions of the input tables:

22 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

>>> t1 = pyfits.open('table1.fits')
>>> t2 = pyfits.open('table2.fits')
>>> new_columns = t1[1].columns + t2[1].columns
>>> hdu = pyfits.BinTableHDU.from_columns(new_columns)
>>> hdu.writeto('newtable.fits')

The number of fields in the output table will be the sum of numbers of fields of the input tables. Users have to make
sure the input tables don’t share any common field names. The number of records in the output table will be the largest
number of records of all input tables. The expanded slots for the originally shorter table(s) will be zero (or blank)
filled.

A simpler version of this example can be used to append a new column to a table. Updating an existing table with a
new column is generally more difficult than it’s worth, but one can “append” a column to a table by creating a new
table with columns from the existing table plus the new column(s):

>>> orig_table = pyfits.open('table.fits')[1].data
>>> orig_cols = orig_table.columns
>>> new_cols = pyfits.ColDefs([
... pyfits.Column(name='NEWCOL1', format='D',
... array=np.zeros(len(orig_table))),
... pyfits.Column(name='NEWCOL2', format='D',
... array=np.zeros(len(orig_table)))])
>>> hdu = pyfits.BinTableHDU.from_columns(orig_cols + new_cols)
>>> hdu.writeto('newtable.fits')

Now newtable.fits contains a new table with the original table, plus the two new columns filled with zeros.

Appending Tables

Appending one table after another is slightly trickier, since the two tables may have different field attributes. Here are
two examples. The first is to append by field indices, the second one is to append by field names. In both cases, the
output table will inherit column attributes (name, format, etc.) of the first table:

>>> t1 = pyfits.open('table1.fits')
>>> t2 = pyfits.open('table2.fits')
>>> nrows1 = t1[1].data.shape[0]
>>> nrows2 = t2[1].data.shape[0]
>>> nrows = nrows1 + nrows2
>>> hdu = pyfits.BinTableHDU.from_columns(t1[1].columns, nrows=nrows)
>>> for colname in t1[1].columns.names:
... hdu.data[colname][nrows1:] = t2[1].data[colname]
>>> hdu.writeto('newtable.fits')

Scaled Data in Tables

A table field’s data, like an image, can also be scaled. Scaling in a table has a more generalized meaning than in images.
In images, the physical data is a simple linear transformation from the storage data. The table fields do have such a
construct too, where BSCALE and BZERO are stored in the header as TSCALn and TZEROn. In addition, boolean
columns and ASCII tables’ numeric fields are also generalized “scaled” fields, but without TSCAL and TZERO.

All scaled fields, like the image case, will take extra memory space as well as processing. So, if high performance is
desired, try to minimize the use of scaled fields.

All the scalings are done for the user, so the user only sees the physical data. Thus, this no need to worry about scaling
back and forth between the physical and storage column values.

1.7. Users Guide 23

PyFITS Documentation, Release 3.4

Creating a FITS Table

Column Creation

To create a table from scratch, it is necessary to create individual columns first. A Column constructor needs the
minimal information of column name and format. Here is a summary of all allowed formats for a binary table:

FITS format code Description 8-bit bytes

L logical (Boolean) 1
X bit *
B Unsigned byte 1
I 16-bit integer 2
J 32-bit integer 4
K 64-bit integer 4
A character 1
E single precision floating point 4
D double precision floating point 8
C single precision complex 8
M double precision complex 16
P array descriptor 8
Q array descriptor 16

We’ll concentrate on binary tables in this chapter. ASCII tables will be discussed in a later chapter. The less frequently
used X format (bit array) and P format (used in variable length tables) will also be discussed in a later chapter.

Besides the required name and format arguments in constructing a Column, there are many optional arguments which
can be used in creating a column. Here is a list of these arguments and their corresponding header keywords and
descriptions:

Argument Corresponding Description
in Column() header keyword

name TTYPE column name
format TFORM column format
unit TUNIT unit
null TNULL null value (only for B, I, and J)
bscale TSCAL scaling factor for data
bzero TZERO zero point for data scaling
disp TDISP display format
dim TDIM multi-dimensional array spec
start TBCOL starting position for ASCII table
array the data of the column

Here are a few Columns using various combination of these arguments:

>>> import numpy as np
>>> from pyfits import Column
>>> counts = np.array([312, 334, 308, 317])
>>> names = np.array(['NGC1', 'NGC2', 'NGC3', 'NGC4'])
>>> c1 = Column(name='target', format='10A', array=names)
>>> c2 = Column(name='counts', format='J', unit='DN', array=counts)
>>> c3 = Column(name='notes', format='A10')
>>> c4 = Column(name='spectrum', format='1000E')
>>> c5 = Column(name='flag', format='L', array=[True, False, True, True])

In this example, formats are specified with the FITS letter codes. When there is a number (>1) preceding a (numeric
type) letter code, it means each cell in that field is a one-dimensional array. In the case of column c4, each cell is an

24 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

array (a numpy array) of 1000 elements.

For character string fields, the number be to the left of the letter ‘A’ when creating binary tables, and should be to the
right when creating ASCII tables. However, as this is a common confusion both formats are understood when creating
binary tables (note, however, that upon writing to a file the correct format will be written in the header). So, for
columns c1 and c3, they both have 10 characters in each of their cells. For numeric data type, the dimension number
must be before the letter code, not after.

After the columns are constructed, the BinTableHDU.from_columns() class method can be used to construct a
table HDU. We can either go through the column definition object:

>>> coldefs = pyfits.ColDefs([c1, c2, c3, c4, c5])
>>> tbhdu = pyfits.BinTableHDU.from_columns(coldefs)

or directly use the BinTableHDU.from_columns() method:

>>> tbhdu = pyfits.BinTableHDU.from_columns([c1, c2, c3, c4, c5])

Note: Users familiar with older versions of PyFITS will wonder what happened to pyfits.new_table(). It is
still there, but is deprecated. BinTableHDU.from_columns() and its companion for ASCII tables TableHDU.
from_columns() are the same as pyfits.new_table() in the arguments they accept and their behavior. They
just make it more explicit what type of table HDU they create.

A look of the newly created HDU’s header will show that relevant keywords are properly populated:

>>> tbhdu.header
XTENSION = 'BINTABLE' / binary table extension
BITPIX = 8 / array data type
NAXIS = 2 / number of array dimensions
NAXIS1 = 4025 / length of dimension 1
NAXIS2 = 4 / length of dimension 2
PCOUNT = 0 / number of group parameters
GCOUNT = 1 / number of groups
TFIELDS = 5 / number of table fields
TTYPE1 = 'target '
TFORM1 = '10A '
TTYPE2 = 'counts '
TFORM2 = 'J '
TUNIT2 = 'DN '
TTYPE3 = 'notes '
TFORM3 = '10A '
TTYPE4 = 'spectrum'
TFORM4 = '1000E '
TTYPE5 = 'flag '
TFORM5 = 'L '

Warning: It should be noted that when creating a new table with BinTableHDU.from_columns(), an in-
memory copy of all of the input column arrays is created. This is because it is not guaranteed that the columns
are arranged contiguously in memory in row-major order (in fact, they are most likely not), so they have to be
combined into a new array.

However, if the array data is already contiguous in memory, such as in an existing record array, a kludge can be used
to create a new table HDU without any copying. First, create the Columns as before, but without using the array=
argument:

1.7. Users Guide 25

PyFITS Documentation, Release 3.4

>>> c1 = Column(name='target', format='10A')

Then call BinTableHDU.from_columns():

>>> tbhdu = pyfits.BinTableHDU.from_columns([c1, c2, c3, c4, c5])

This will create a new table HDU as before, with the correct column definitions, but an empty data section. Now
simply assign your array directly to the HDU’s data attribute:

>>> tbhdu.data = mydata

In a future version of PyFITS table creation will be simplified and this process won’t be necessary.

1.7.4 Verification

PyFITS has built in a flexible scheme to verify FITS data being conforming to the FITS standard. The basic verification
philosophy in PyFITS is to be tolerant in input and strict in output.

When PyFITS reads a FITS file which is not conforming to FITS standard, it will not raise an error and exit. It will try
to make the best educated interpretation and only gives up when the offending data is accessed and no unambiguous
interpretation can be reached.

On the other hand, when writing to an output FITS file, the content to be written must be strictly compliant to the FITS
standard by default. This default behavior can be overwritten by several other options, so the user will not be held up
because of a minor standard violation.

FITS Standard

Since FITS standard is a “loose” standard, there are many places the violation can occur and to enforce them all will
be almost impossible. It is not uncommon for major observatories to generate data products which are not 100% FITS
compliant. Some observatories have also developed their own sub-standard (dialect?) and some of these become so
prevalent that they become de facto standards. Examples include the long string value and the use of the CONTINUE
card.

The violation of the standard can happen at different levels of the data structure. PyFITS’s verification scheme is
developed on these hierarchical levels. Here are the 3 PyFITS verification levels:

1. The HDU List

2. Each HDU

3. Each Card in the HDU Header

These three levels correspond to the three categories of PyFITS objects: HDUList, any HDU (e.g. PrimaryHDU ,
ImageHDU , etc.), and Card. They are the only objects having the verify() method. Most other classes in PyFITS
do not have a verify() method.

If verify() is called at the HDU List level, it verifies standard compliance at all three levels, but a call of verify()
at the Card level will only check the compliance of that Card. Since PyFITS is tolerant when reading a FITS file, no
verify() is called on input. On output, verify() is called with the most restrictive option as the default.

Verification Options

There are several options accepted by all verify(option) calls in PyFITS. In addition, they available for the
output_verify argument of the following methods: close(), writeto(), and flush(). In these cases,
they are passed to a verify() call within these methods. The available options are:

26 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

exception

This option will raise an exception, if any FITS standard is violated. This is the default option for output (i.e. when
writeto(), close(), or flush() is called. If a user wants to overwrite this default on output, the other options
listed below can be used.

warn

This option is the same as the ignore option but will send warning messages. It will not try to fix any FITS standard
violations whether fixable or not.

ignore

This option will ignore any FITS standard violation. On output, it will write the HDU List content to the output FITS
file, whether or not it is conforming to the FITS standard.

The ignore option is useful in the following situations:

1. An input FITS file with non-standard formatting is read and the user wants to copy or write out to an output file.
The non-standard formatting will be preserved in the output file.

2. A user wants to create a non-standard FITS file on purpose, possibly for testing or consistency.

No warning message will be printed out. This is like a silent warning option (see below).

fix

This option will try to fix any FITS standard violations. It is not always possible to fix such violations. In general,
there are two kinds of FITS standard violations: fixable and non-fixable. For example, if a keyword has a floating
number with an exponential notation in lower case ‘e’ (e.g. 1.23e11) instead of the upper case ‘E’ as required by the
FITS standard, it is a fixable violation. On the other hand, a keyword name like ‘P.I.’ is not fixable, since it will not
know what to use to replace the disallowed periods. If a violation is fixable, this option will print out a message noting
it is fixed. If it is not fixable, it will throw an exception.

The principle behind fixing is to do no harm. For example, it is plausible to ‘fix’ a Card with a keyword name like
‘P.I.’ by deleting it, but PyFITS will not take such action to hurt the integrity of the data.

Not all fixes may be the “correct” fix, but at least PyFITS will try to make the fix in such a way that it will not throw
off other FITS readers.

silentfix

Same as fix, but will not print out informative messages. This may be useful in a large script where the user does not
want excessive harmless messages. If the violation is not fixable, it will still throw an exception.

In addition, as of PyFITS version 3.3.0 the following ‘combined’ options are available:

• fix+ignore

• fix+warn

• fix+exception

• silentfix+ignore

• silentfix+warn

• silentfix+exception

These options combine the semantics of the basic options. For example silentfix+exception is actually equiv-
alent to just silentfix in that fixable errors will be fixed silently, but any unfixable errors will raise an exception.
On the other hand silentfix+warn will issue warnings for unfixable errors, but will stay silent about any fixed
errors.

1.7. Users Guide 27

PyFITS Documentation, Release 3.4

Verifications at Different Data Object Levels

We’ll examine what PyFITS’s verification does at the three different levels:

Verification at HDUList

At the HDU List level, the verification is only for two simple cases:

1. Verify that the first HDU in the HDU list is a Primary HDU. This is a fixable case. The fix is to insert a minimal
Primary HDU into the HDU list.

2. Verify second or later HDU in the HDU list is not a Primary HDU. Violation will not be fixable.

Verification at Each HDU

For each HDU, the mandatory keywords, their locations in the header, and their values will be verified. Each FITS
HDU has a fixed set of required keywords in a fixed order. For example, the Primary HDU’s header must at least have
the following keywords:

SIMPLE = T /
BITPIX = 8 /
NAXIS = 0

If any of the mandatory keywords are missing or in the wrong order, the fix option will fix them:

>>> hdu.header # has a 'bad' header
SIMPLE = T /
NAXIS = 0
BITPIX = 8 /
>>> hdu.verify('fix') # fix it
Output verification result:
'BITPIX' card at the wrong place (card 2). Fixed by moving it to the right
place (card 1).
>>> h.header # voila!
SIMPLE = T / conforms to FITS standard
BITPIX = 8 / array data type
NAXIS = 0

Verification at Each Card

The lowest level, the Card, also has the most complicated verification possibilities. Here is a lit of fixable and not
fixable Cards:

Fixable Cards:

1. floating point numbers with lower case ‘e’ or ‘d’

2. the equal sign is before column 9 in the card image

3. string value without enclosing quotes

4. missing equal sign before column 9 in the card image

5. space between numbers and E or D in floating point values

6. unparseable values will be “fixed” as a string

Here are some examples of fixable cards:

>>> hdu.header[4:] # has a bunch of fixable cards
FIX1 = 2.1e23
FIX2= 2

28 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

FIX3 = string value without quotes
FIX4 2
FIX5 = 2.4 e 03
FIX6 = '2 10 '
>>> hdu.header[5] # can still access the values before the fix
2
>>> hdu.header['fix4']
2
>>> hdu.header['fix5']
2400.0
>>> hdu.verify('silentfix')
>>> hdu.header[4:]
FIX1 = 2.1E23
FIX2 = 2
FIX3 = 'string value without quotes'
FIX4 = 2
FIX5 = 2.4E03
FIX6 = '2 10 '

Unfixable Cards:

1. illegal characters in keyword name

We’ll summarize the verification with a “life-cycle” example:

>>> h = pyfits.PrimaryHDU() # create a PrimaryHDU
>>> # Try to add an non-standard FITS keyword 'P.I.' (FITS does no allow
>>> # '.' in the keyword), if using the update() method - doesn't work!
>>> h['P.I.'] = 'Hubble'
ValueError: Illegal keyword name 'P.I.'
>>> # Have to do it the hard way (so a user will not do this by accident)
>>> # First, create a card image and give verbatim card content (including
>>> # the proper spacing, but no need to add the trailing blanks)
>>> c = pyfits.Card.fromstring("P.I. = 'Hubble'")
>>> h.header.append(c) # then append it to the header
>>> # Now if we try to write to a FITS file, the default output
>>> # verification will not take it.
>>> h.writeto('pi.fits')
Output verification result:
HDU 0:

Card 4:
Unfixable error: Illegal keyword name 'P.I.'

......
raise VerifyError

VerifyError
>>> # Must set the output_verify argument to 'ignore', to force writing a
>>> # non-standard FITS file
>>> h.writeto('pi.fits', output_verify='ignore')
Now reading a non-standard FITS file
pyfits is magnanimous in reading non-standard FITS file
>>> hdus = pyfits.open('pi.fits')
>>> hdus[0].header
SIMPLE = T / conforms to FITS standard
BITPIX = 8 / array data type
NAXIS = 0 / number of array dimensions
EXTEND = T
P.I. = 'Hubble'
>>> # even when you try to access the offending keyword, it does NOT
>>> # complain

1.7. Users Guide 29

PyFITS Documentation, Release 3.4

>>> hdus[0].header['p.i.']
'Hubble'
>>> # But if you want to make sure if there is anything wrong/non-standard,
>>> # use the verify() method
>>> hdus.verify()
Output verification result:
HDU 0:

Card 4:
Unfixable error: Illegal keyword name 'P.I.'

Verification using the FITS Checksum Keyword Convention

The North American FITS committee has reviewed the FITS Checksum Keyword Convention for possible adoption
as a FITS Standard. This convention provides an integrity check on information contained in FITS HDUs. The
convention consists of two header keyword cards: CHECKSUM and DATASUM. The CHECKSUM keyword is
defined as an ASCII character string whose value forces the 32-bit 1’s complement checksum accumulated over all the
2880-byte FITS logical records in the HDU to equal negative zero. The DATASUM keyword is defined as a character
string containing the unsigned integer value of the 32-bit 1’s complement checksum of the data records in the HDU.
Verifying the the accumulated checksum is still equal to negative zero provides a fairly reliable way to determine that
the HDU has not been modified by subsequent data processing operations or corrupted while copying or storing the
file on physical media.

In order to avoid any impact on performance, by default PyFITS will not verify HDU checksums when a file is opened
or generate checksum values when a file is written. In fact, CHECKSUM and DATASUM cards are automatically
removed from HDU headers when a file is opened, and any CHECKSUM or DATASUM cards are stripped from
headers when a HDU is written to a file. In order to verify the checksum values for HDUs when opening a file, the
user must supply the checksum keyword argument in the call to the open convenience function with a value of True.
When this is done, any checksum verification failure will cause a warning to be issued (via the warnings module). If
checksum verification is requested in the open, and no CHECKSUM or DATASUM cards exist in the HDU header,
the file will open without comment. Similarly, in order to output the CHECKSUM and DATASUM cards in an HDU
header when writing to a file, the user must supply the checksum keyword argument with a value of True in the call to
the writeto function. It is possible to write only the DATASUM card to the header by supplying the checksum keyword
argument with a value of ‘datasum’.

Here are some examples:

>>> # Open the file pix.fits verifying the checksum values for all HDUs
>>> hdul = pyfits.open('pix.fits', checksum=True)

>>> # Open the file in.fits where checksum verification fails for the
>>> # primary HDU
>>> hdul = pyfits.open('in.fits', checksum=True)
Warning: Checksum verification failed for HDU #0.

>>> # Create file out.fits containing an HDU constructed from data and
>>> # header containing both CHECKSUM and DATASUM cards.
>>> pyfits.writeto('out.fits', data, header, checksum=True)

>>> # Create file out.fits containing all the HDUs in the HDULIST
>>> # hdul with each HDU header containing only the DATASUM card
>>> hdul.writeto('out.fits', checksum='datasum')

30 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

>>> # Create file out.fits containing the HDU hdu with both CHECKSUM
>>> # and DATASUM cards in the header
>>> hdu.writeto('out.fits', checksum=True)

>>> # Append a new HDU constructed from array data to the end of
>>> # the file existingfile.fits with only the appended HDU
>>> # containing both CHECKSUM and DATASUM cards.
>>> pyfits.append('existingfile.fits', data, checksum=True)

1.7.5 Less Familiar Objects

In this chapter, we’ll discuss less frequently used FITS data structures. They include ASCII tables, variable length
tables, and random access group FITS files.

ASCII Tables

FITS standard supports both binary and ASCII tables. In ASCII tables, all the data are stored in a human readable
text form, so it takes up more space and extra processing to parse the text for numeric data. Depending on how the
columns are formatted, floating point data may also lose precision.

In PyFITS, the interface for ASCII tables and binary tables is basically the same, i.e. the data is in the .data attribute
and the field() method is used to refer to the columns and returns a numpy array. When reading the table, PyFITS
will automatically detect what kind of table it is.

>>> hdus = pyfits.open('ascii_table.fits')
>>> hdus[1].data[:1]
FITS_rec(
... [(10.123000144958496, 37)],
... dtype=[('a', '>f4'),('b','>i4')])
>>> hdus[1].data['a']
array([10.12300014, 5.19999981, 15.60999966, 0. ,
345.], dtype=float32)
>>> hdus[1].data.formats
['E10.4', 'I5']

Note that the formats in the record array refer to the raw data which are ASCII strings (therefore ‘a11’ and ‘a5’), but
the .formats attribute of data retains the original format specifications (‘E10.4’ and ‘I5’).

Creating an ASCII Table

Creating an ASCII table from scratch is similar to creating a binary table. The difference is in the Column definitions.
The columns/fields in an ASCII table are more limited than in a binary table. It does not allow more than one numerical
value in a cell. Also, it only supports a subset of what allowed in a binary table, namely character strings, integer, and
(single and double precision) floating point numbers. Boolean and complex numbers are not allowed.

The format syntax (the values of the TFORM keywords) is different from that of a binary table, they are:

Aw Character string
Iw (Decimal) Integer
Fw.d Single precision real
Ew.d Single precision real, in exponential notation
Dw.d Double precision real, in exponential notation

1.7. Users Guide 31

PyFITS Documentation, Release 3.4

where, w is the width, and d the number of digits after the decimal point. The syntax difference between ASCII and
binary tables can be confusing. For example, a field of 3-character string is specified ‘3A’ in a binary table and as ‘A3’
in an ASCII table.

The other difference is the need to specify the table type when using the TableHDU.from_columns() method,
and that Column should be provided the ascii=True argument in order to be unambiguous.

Note: Although binary tables are more common in most FITS files, earlier versions of the FITS format only sup-
ported ASCII tables. That is why the class TableHDU is used for representing ASCII tables specifically, whereas
BinTableHDU is more explicit that it represents a binary table. These names come from the value XTENSION
keyword in the tables’ headers, which is TABLE for ASCII tables and BINTABLE for binary tables.

TableHDU.from_columns() can be used like so:

>>> import numpy as np
>>> import pyfits
>>> a1 = np.array(['abcd', 'def'])
>>> r1 = np.array([11., 12.])
>>> c1 = pyfits.Column(name='abc', format='A3', array=a1, ascii=True)
>>> c2 = pyfits.Column(name='def', format='E', array=r1, bscale=2.3,
... bzero=0.6, ascii=True)
>>> c3 = pyfits.Column(name='t1', format='I', array=[91, 92, 93],
... ascii=True)
>>> hdu = pyfits.TableHDU.from_columns([c1, c2, c3])
>>> hdu.writeto('ascii.fits')
>>> hdu.data
FITS_rec([('abcd', 11.0, 91), ('def', 12.0, 92), ('', 0.0, 93)],

dtype=[('abc', '|S3'), ('def', '|S14'), ('t1', '|S10')])

It should be noted that when the formats of the columns are unambiguously specific to ASCII tables it is not necessary
to specify ascii=True in the ColDefs constructor. In this case there is ambiguity because the format code 'I'
represents a 16-bit integer in binary tables, while in ASCII tables it is not technically a valid format. ASCII table
format codes technically require a character width for each column, such as 'I10' to create a column that can hold
integers up to 10 characters wide.

However, PyFITS allows the width specification to be omitted in some cases. When it is ommitted from 'I' format
columns the minimum width needed to accurately represent all integers in the column is used. The only problem with
using this shortcut is its ambiguity with the binary table 'I' format, so specifying ascii=True is a good practice
(though PyFITS will still figure out what you meant in most cases).

Variable Length Array Tables

The FITS standard also supports variable length array tables. The basic idea is that sometimes it is desirable to
have tables with cells in the same field (column) that have the same data type but have different lengths/dimensions.
Compared with the standard table data structure, the variable length table can save storage space if there is a large
dynamic range of data lengths in different cells.

A variable length array table can have one or more fields (columns) which are variable length. The rest of the fields
(columns) in the same table can still be regular, fixed-length ones. PyFITS will automatically detect what kind of field
it is during reading; no special action is needed from the user. The data type specification (i.e. the value of the TFORM
keyword) uses an extra letter ‘P’ and the format is

rPt(max)

where r may be 0 or 1 (typically omitted, as it is not applicable to variable length arrays), t is one of the letter codes
for basic data types (L, B, I, J, etc.; currently, the X format is not supported for variable length array field in PyFITS),

32 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

and max is the maximum number of elements of any array in the column. So, for a variable length field of int16, the
corresponding format spec is, e.g. ‘PJ(100)’:

>>> f = pyfits.open('variable_length_table.fits')
>>> print f[1].header['tform5']
1PI(20)
>>> print f[1].data.field(4)[:3]
[array([1], dtype=int16) array([88, 2], dtype=int16)
array([1, 88, 3], dtype=int16)]

The above example shows a variable length array field of data type int16. Its first row has one element, second row
has 2 elements etc. Accessing variable length fields is almost identical to regular fields, except that operations on the
whole field simultaneously are usually not possible. A user has to process the field row by row as though they are
independent arrays.

Creating a Variable Length Array Table

Creating a variable length table is almost identical to creating a regular table. The only difference is in the creation of
field definitions which are variable length arrays. First, the data type specification will need the ‘P’ letter, and secondly,
the field data must be an objects array (as included in the numpy module). Here is an example of creating a table with
two fields, one is regular and the other variable length array:

>>> import pyfits
>>> import numpy as np
>>> c1 = pyfits.Column(name='var', format='PJ()',
... array=np.array([[45., 56]
... [11, 12, 13]],
... dtype=np.object))
>>> c2 = pyfits.Column(name='xyz', format='2I', array=[[11, 3], [12, 4]])
>>> tbhdu = pyfits.BinTableHDU.from_columns([c1, c2])
>>> print tbhdu.data
FITS_rec([(array([45, 56]), array([11, 3], dtype=int16)),

(array([11, 12, 13]), array([12, 4], dtype=int16))],
dtype=[('var', '<i4', 2), ('xyz', '<i2', 2)])

>>> tbhdu.writeto('var_table.fits')
>>> hdu = pyfits.open('var_table.fits')
>>> hdu[1].header
XTENSION= 'BINTABLE' / binary table extension
BITPIX = 8 / array data type
NAXIS = 2 / number of array dimensions
NAXIS1 = 12 / length of dimension 1
NAXIS2 = 2 / length of dimension 2
PCOUNT = 20 / number of group parameters
GCOUNT = 1 / number of groups
TFIELDS = 2 / number of table fields
TTYPE1 = 'var '
TFORM1 = 'PJ(3) '
TTYPE2 = 'xyz '
TFORM2 = '2I '

Random Access Groups

Another less familiar data structure supported by the FITS standard is the random access group. This convention was
established before the binary table extension was introduced. In most cases its use can now be superseded by the
binary table. It is mostly used in radio interferometry.

Like Primary HDUs, a Random Access Group HDU is always the first HDU of a FITS file. Its data has one or more

1.7. Users Guide 33

PyFITS Documentation, Release 3.4

groups. Each group may have any number (including 0) of parameters, together with an image. The parameters and
the image have the same data type.

All groups in the same HDU have the same data structure, i.e. same data type (specified by the keyword BITPIX,
as in image HDU), same number of parameters (specified by PCOUNT), and the same size and shape (specified by
NAXISn keywords) of the image data. The number of groups is specified by GCOUNT and the keyword NAXIS1 is
always 0. Thus the total data size for a Random Access Group HDU is

|BITPIX| * GCOUNT * (PCOUNT + NAXIS2 * NAXIS3 * ... * NAXISn)

Header and Summary

Accessing the header of a Random Access Group HDU is no different from any other HDU. Just use the .header
attribute.

The content of the HDU can similarly be summarized by using the HDUList.info() method:

>>> f = pyfits.open('random_group.fits')
>>> print f[0].header['groups']
True
>>> print f[0].header['gcount']
7956
>>> print f[0].header['pcount']
6
>>> f.info()
Filename: random_group.fits
No. Name Type Cards Dimensions Format
0 AN GroupsHDU 158 (3, 4, 1, 1, 1) Float32 7956 Groups
6 Parameters

Data: Group Parameters

The data part of a random access group HDU is, like other HDUs, in the .data attribute. It includes both parameter(s)
and image array(s).

Show the data in 100th group, including parameters and data:

>>> print f[0].data[99]
(-8.1987486677035799e-06, 1.2010923615889215e-05,
-1.011189139244005e-05, 258.0, 2445728., 0.10, array([[[[[12.4308672 ,
0.56860745, 3.99993873],
[12.74043655, 0.31398511, 3.99993873],
[0. , 0. , 3.99993873],
[0. , 0. , 3.99993873]]]]], dtype=float32))

The data first lists all the parameters, then the image array, for the specified group(s). As a reminder, the image data in
this file has the shape of (1,1,1,4,3) in Python or C convention, or (3,4,1,1,1) in IRAF or FORTRAN convention.

To access the parameters, first find out what the parameter names are, with the .parnames attribute:

>>> f[0].data.parnames # get the parameter names
['uu--', 'vv--', 'ww--', 'baseline', 'date', 'date']

The group parameter can be accessed by the par() method. Like the table field() method, the argument can be
either index or name:

>>> print f[0].data.par(0)[99] # Access group parameter by name or by index
-8.1987486677035799e-06
>>> print f[0].data.par('uu--')[99]
-8.1987486677035799e-06

34 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

Note that the parameter name ‘date’ appears twice. This is a feature in the random access group, and it means to add
the values together. Thus:

>>> f[0].data.parnames # get the parameter names
['uu--', 'vv--', 'ww--', 'baseline', 'date', 'date']
>>> print f[0].data.par(4)[99] # Duplicate parameter name 'date'
2445728.0
>>> print f[0].data.par(5)[99]
0.10
>>> # When accessed by name, it adds the values together if the name is
>>> # shared by more than one parameter
>>> print f[0].data.par('date')[99]
2445728.10

The par() is a method for either the entire data object or one data item (a group). So there are two possible ways to
get a group parameter for a certain group, this is similar to the situation in table data (with its field() method):

>>> print f[0].data.par(0)[99]
-8.1987486677035799e-06
>>> print f[0].data[99].par(0)
-8.1987486677035799e-06

On the other hand, to modify a group parameter, we can either assign the new value directly (if accessing the row/group
number last) or use the :meth:~GroupData.setpar method (if accessing the row/group number first). The method
:meth:~GroupData.setpar is also needed for updating by name if the parameter is shared by more than one
parameters:

>>> # Update group parameter when selecting the row (group) number last
>>> f[0].data.par(0)[99] = 99.
>>> # Update group parameter when selecting the row (group) number first
>>> f[0].data[99].setpar(0, 99.) # or setpar('uu--', 99.)
>>>
>>> # Update group parameter by name when the name is shared by more than
>>> # one parameters, the new value must be a tuple of constants or
>>> # sequences
>>> f[0].data[99].setpar('date', (2445729., 0.3))
>>> f[0].data[:3].setpar('date', (2445729., [0.11, 0.22, 0.33]))
>>> f[0].data[:3].par('date')
array([2445729.11 , 2445729.22 , 2445729.33000001])

Data: Image Data

The image array of the data portion is accessible by the :attr:~GroupData.data attribute of the data object. A
numpy array is returned:

>>> print f[0].data.data[99]
array([[[[[12.4308672 , 0.56860745, 3.99993873],
[12.74043655, 0.31398511, 3.99993873],
[0. , 0. , 3.99993873],
[0. , 0. , 3.99993873]]]]], type=float32)

Creating a Random Access Group HDU

To create a random access group HDU from scratch, use GroupData to encapsulate the data into the group data
structure, and use GroupsHDU to create the HDU itself:

>>> # Create the image arrays. The first dimension is the number of groups.
>>> imdata = numpy.arange(100.0, shape=(10, 1, 1, 2, 5))

1.7. Users Guide 35

PyFITS Documentation, Release 3.4

>>> # Next, create the group parameter data, we'll have two parameters.
>>> # Note that the size of each parameter's data is also the number of
>>> # groups.
>>> # A parameter's data can also be a numeric constant.
>>> pdata1 = numpy.arange(10) + 0.1
>>> pdata2 = 42
>>> # Create the group data object, put parameter names and parameter data
>>> # in lists assigned to their corresponding arguments.
>>> # If the data type (bitpix) is not specified, the data type of the
>>> # image will be used.
>>> x = pyfits.GroupData(imdata, parnames=['abc', 'xyz'],
... pardata=[pdata1, pdata2], bitpix=-32)
>>> # Now, create the GroupsHDU and write to a FITS file.
>>> hdu = pyfits.GroupsHDU(x)
>>> hdu.writeto('test_group.fits')
>>> hdu.header
SIMPLE = T / conforms to FITS standard
BITPIX = -32 / array data type
NAXIS = 5 / number of array dimensions
NAXIS1 = 0
NAXIS2 = 5
NAXIS3 = 2
NAXIS4 = 1
NAXIS5 = 1
EXTEND = T
GROUPS = T / has groups
PCOUNT = 2 / number of parameters
GCOUNT = 10 / number of groups
PTYPE1 = 'abc '
PTYPE2 = 'xyz '
>>> print hdu.data[:2]
FITS_rec[
(0.10000000149011612, 42.0, array([[[[0., 1., 2., 3., 4.],
[5., 6., 7., 8., 9.]]]], dtype=float32)),
(1.1000000238418579, 42.0, array([[[[10., 11., 12., 13., 14.],
[15., 16., 17., 18., 19.]]]], dtype=float32))
]

Compressed Image Data

A general technique has been developed for storing compressed image data in FITS binary tables. The principle used
in this convention is to first divide the n-dimensional image into a rectangular grid of sub images or ‘tiles’. Each tile
is then compressed as a continuous block of data, and the resulting compressed byte stream is stored in a row of a
variable length column in a FITS binary table. Several commonly used algorithms for compressing image tiles are
supported. These include, Gzip, Rice, IRAF Pixel List (PLIO), and Hcompress.

For more details, reference “A FITS Image Compression Proposal” from:

http://www.adass.org/adass/proceedings/adass99/P2-42/

and “Registered FITS Convention, Tiled Image Compression Convention”:

http://fits.gsfc.nasa.gov/registry/tilecompression.html

Compressed image data is accessed, in PyFITS, using the optional “pyfits.compression” module contained in a C
shared library (compression.so). If an attempt is made to access an HDU containing compressed image data when the
pyfitsComp module is not available, the user is notified of the problem and the HDU is treated like a standard binary

36 Chapter 1. Introduction

http://www.adass.org/adass/proceedings/adass99/P2-42/
http://fits.gsfc.nasa.gov/registry/tilecompression.html

PyFITS Documentation, Release 3.4

table HDU. This notification will only be made the first time compressed image data is encountered. In this way, the
pyfitsComp module is not required in order for PyFITS to work.

Header and Summary

In PyFITS, the header of a compressed image HDU appears to the user like any image header. The actual header stored
in the FITS file is that of a binary table HDU with a set of special keywords, defined by the convention, to describe
the structure of the compressed image. The conversion between binary table HDU header and image HDU header is
all performed behind the scenes. Since the HDU is actually a binary table, it may not appear as a primary HDU in a
FITS file.

The content of the HDU header may be accessed using the .header attribute:

>>> f = pyfits.open('compressed_image.fits')
>>> print f[1].header
XTENSION= 'IMAGE ' / extension type
BITPIX = 16 / array data type
NAXIS = 2 / number of array dimensions
NAXIS1 = 512 / length of data axis
NAXIS2 = 512 / length of data axis
PCOUNT = 0 / number of parameters
GCOUNT = 1 / one data group (required keyword)
EXTNAME = 'COMPRESSED' / name of this binary table extension

The contents of the corresponding binary table HDU may be accessed using the hidden ._header attribute. However,
all user interface with the HDU header should be accomplished through the image header (the .header attribute):

>>> f = pyfits.open('compressed_image.fits')
>>> print f[1]._header
XTENSION= 'BINTABLE' / binary table extension
BITPIX = 8 / 8-bit bytes
NAXIS = 2 / 2-dimensional binary table
NAXIS1 = 8 / width of table in bytes
NAXIS2 = 512 / number of rows in table
PCOUNT = 157260 / size of special data area
GCOUNT = 1 / one data group (required keyword)
TFIELDS = 1 / number of fields in each row
TTYPE1 = 'COMPRESSED_DATA' / label for field 1
TFORM1 = '1PB(384)' / data format of field: variable length array
ZIMAGE = T / extension contains compressed image
ZBITPIX = 16 / data type of original image
ZNAXIS = 2 / dimension of original image
ZNAXIS1 = 512 / length of original image axis
ZNAXIS2 = 512 / length of original image axis
ZTILE1 = 512 / size of tiles to be compressed
ZTILE2 = 1 / size of tiles to be compressed
ZCMPTYPE= 'RICE_1 ' / compression algorithm
ZNAME1 = 'BLOCKSIZE' / compression block size
ZVAL1 = 32 / pixels per block
EXTNAME = 'COMPRESSED' / name of this binary table extension

The contents of the HDU can be summarized by using either the info() convenience function or method:

>>> pyfits.info('compressed_image.fits')
Filename: compressed_image.fits
No. Name Type Cards Dimensions Format
0 PRIMARY PrimaryHDU 6 () int16
1 COMPRESSED CompImageHDU 52 (512, 512) int16
>>>

1.7. Users Guide 37

PyFITS Documentation, Release 3.4

>>> f = pyfits.open('compressed_image.fits')
>>> f.info()
Filename: compressed_image.fits
No. Name Type Cards Dimensions Format
0 PRIMARY PrimaryHDU 6 () int16
1 COMPRESSED CompImageHDU 52 (512, 512) int16
>>>

Data

As with the header, the data of a compressed image HDU appears to the user as standard uncompressed image data.
The actual data is stored in the fits file as Binary Table data containing at least one column (COMPRESSED_DATA).
Each row of this variable-length column contains the byte stream that was generated as a result of compressing the
corresponding image tile. Several optional columns may also appear. These include, UNCOMPRESSED_DATA to
hold the uncompressed pixel values for tiles that cannot be compressed, ZSCALE and ZZERO to hold the linear scale
factor and zero point offset which may be needed to transform the raw uncompressed values back to the original image
pixel values, and ZBLANK to hold the integer value used to represent undefined pixels (if any) in the image.

The contents of the uncompressed HDU data may be accessed using the .data attribute:

>>> f = pyfits.open('compressed_image.fits')
>>> f[1].data
array([[38, 43, 35, ..., 45, 43, 41],

[36, 41, 37, ..., 42, 41, 39],
[38, 45, 37, ..., 42, 35, 43],
...,
[49, 52, 49, ..., 41, 35, 39],
[57, 52, 49, ..., 40, 41, 43],
[53, 57, 57, ..., 39, 35, 45]], dtype=int16)

The compressed data can be accessed via the .compressed_data attribute, but this rarely need be accessed di-
rectly. It may be useful for performing direct copies of the compressed data without needing to decompress it first.

Creating a Compressed Image HDU

To create a compressed image HDU from scratch, simply construct a CompImageHDU object from an uncompressed
image data array and its associated image header. From there, the HDU can be treated just like any other image HDU:

>>> hdu = pyfits.CompImageHDU(imageData, imageHeader)
>>> hdu.writeto('compressed_image.fits')

The API documentation for the CompImageHDU initializer method describes the possible options for constructing a
CompImageHDU object.

1.7.6 Executable Scripts

PyFITS installs a couple of useful utility programs on your system that are built with PyFITS.

fitsinfo

fitsinfo is a command-line script based on PyFITS for printing a summary of the HDUs in one or more FITS
files(s) to the standard output.

Example usage of fitsinfo:

1. Print a summary of the HDUs in a FITS file:

38 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

$ fitsinfo filename.fits

Filename: filename.fits
No. Name Type Cards Dimensions Format
0 PRIMARY PrimaryHDU 138 ()
1 SCI ImageHDU 61 (800, 800) int16
2 SCI ImageHDU 61 (800, 800) int16
3 SCI ImageHDU 61 (800, 800) int16
4 SCI ImageHDU 61 (800, 800) int16

2. Print a summary of HDUs of all the FITS files in the current directory:

$ fitsinfo *.fits

fitsheader

fitsheader is a command line script based on pyfits for printing the header(s) of one or more FITS file(s) to the
standard output in a human- readable format.

Example uses of fitsheader:

1. Print the header of all the HDUs of a .fits file:

$ fitsheader filename.fits

2. Print the header of the third and fifth HDU extension:

$ fitsheader --extension 3 --extension 5 filename.fits

3. Print the header of a named extension, e.g. select the HDU containing keywords EXTNAME=’SCI’ and
EXTVER=‘2’:

$ fitsheader --extension "SCI,2" filename.fits

4. Print only specific keywords:

$ fitsheader --keyword BITPIX --keyword NAXIS filename.fits

5. Print keywords NAXIS, NAXIS1, NAXIS2, etc using a wildcard:

$ fitsheader --keyword NAXIS* filename.fits

Note that compressed images (HDUs of type CompImageHDU) really have two headers: a real BINTABLE header to
describe the compressed data, and a fake IMAGE header representing the image that was compressed. PyFITS returns
the latter by default. You must supply the --compressed option if you require the real header that describes the
compression.

With PyFITS installed, please run fitsheader --help to see the full usage documentation.

fitscheck

fitscheck is a command line script based on pyfits for verifying and updating the CHECKSUM and DATASUM
keywords of .fits files. fitscheck can also detect and often fix other FITS standards violations. fitscheck
facilitates re-writing the non-standard checksums originally generated by pyfits with standard checksums which will
interoperate with CFITSIO.

1.7. Users Guide 39

PyFITS Documentation, Release 3.4

fitscheck will refuse to write new checksums if the checksum keywords are missing or their values are
bad. Use --force to write new checksums regardless of whether or not they currently exist or pass. Use
--ignore-missing to tolerate missing checksum keywords without comment.

Example uses of fitscheck:

1. Verify and update checksums, tolerating non-standard checksums, updating to standard checksum:

$ fitscheck --checksum either --write *.fits

2. Write new checksums, even if existing checksums are bad or missing:

$ fitscheck --write --force *.fits

3. Verify standard checksums and FITS compliance without changing the files:

$ fitscheck --compliance *.fits

4. Verify original nonstandard checksums only:

$ fitscheck --checksum nonstandard *.fits

5. Only check and fix compliance problems, ignoring checksums:

$ fitscheck --checksum none --compliance --write *.fits

6. Verify standard interoperable checksums:

$ fitscheck *.fits

7. Delete checksum keywords:

$ fitscheck --checksum none --write *.fits

Usage: fitscheck [options] <.fits files...>

.e.g. fitscheck example.fits

Verifies and optionally re-writes the CHECKSUM and DATASUM keywords
for a .fits file.
Optionally detects and fixes FITS standard compliance problems.

Options:
-h, --help show this help message and exit
-k [standard | nonstandard | either | none], --checksum=[standard | nonstandard |

→˓either | none]
Choose FITS checksum mode or none. Defaults standard.

-w, --write Write out file checksums and/or FITS compliance fixes.
-f, --force Do file update even if original checksum was bad.
-c, --compliance Do FITS compliance checking; fix if possible.
-i, --ignore-missing Ignore missing checksums.
-v, --verbose Generate extra output.

fitsdiff

fitsdiff provides a thin command-line wrapper around the FITSDiff interface–it outputs the report from a
FITSDiff of two FITS files, and like common diff-like commands returns a 0 status code if no differences were
found, and 1 if differences were found:

40 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

Usage
=====

Compare two FITS image files and report the differences in header keywords and
data.

fitsdiff [options] filename1 filename2

where filename1 filename2 are the two files to be compared. They may also be
wild cards, in such cases, they must be enclosed by double or single quotes, or
they may be directory names. If both are directory names, all files in each of
the directories will be included; if only one is a directory name, then the
directory name will be prefixed to the file name(s) specified by the other
argument. for example::

fitsdiff "*.fits" "/machine/data1"

will compare all FITS files in the current directory to the corresponding files
in the directory /machine/data1.

Options
=======
--help, -h show this help message and exit
--quiet, -q Produce no output and just return a status code.
--num-diffs=INTEGER, -n INTEGER

Max number of data differences (image pixel or table
element) to report per extension (default 10).

--difference-tolerance=NUMBER, -d NUMBER
The relative tolerance for comparison of two numbers,
specifically two floating point numbers. This applies
to data in both images and tables, and to floating
point keyword values in headers (default 0.0).

--no-ignore-blanks, -b Don't ignore trailing blanks (whitespace) in string
values. Otherwise trailing blanks both in header
keywords/values and in table column values) are not
treated as significant i.e., without this option
'ABCDEF ' and 'ABCDEF' are considered equivalent.

--no-ignore-blank-cards
Don't ignore entirely blank cards in headers.
Normally fitsdiff does not consider blank cards when
comparing headers, but this will ensure that even
blank cards match up.

--exact Report ALL differences, overriding command-line
options and FITSDIFF_SETTINGS.

--output-file=FILE, -o FILE
Output results to this file; otherwise results are
printed to stdout.

Header Comparison Options

--ignore-keywords=KEYWORDS, -k KEYWORDS

Comma-separated list of keywords not to be compared.
Keywords may contain wildcard patterns. To exclude
all keywords, use "*"; make sure to have double or
single quotes around the asterisk on the command-line.

--ignore-comments=KEYWORDS, -c KEYWORDS
Comma-separated list of keywords whose comments will
not be compared. Wildcards may be used as with
--ignore-keywords.

1.7. Users Guide 41

PyFITS Documentation, Release 3.4

Table Comparison Options

--ignore-fields=COLUMNS, -f COLUMNS

Comma-separated list of fields (i.e. columns) not to
be compared. All columns may be excluded using "*" as
with --ignore-keywords.

If the two files are identical within the specified conditions, it will report
"No difference is found." If the value(s) of -c and -k takes the form
'@filename', list is in the text file 'filename', and each line in that text
file contains one keyword.

Example

fitsdiff -k filename,filtnam1 -n 5 -d 1.e-6 test1.fits test2

This command will compare files test1.fits and test2.fits, report maximum of 5
different pixels values per extension, only report data values larger than
1.e-6 relative to each other, and will neglect the different values of
keywords FILENAME and FILTNAM1 (or their very existence).

fitsdiff command-line arguments can also be set using the environment variable
FITSDIFF_SETTINGS. If the FITSDIFF_SETTINGS environment variable is present,
each argument present will override the corresponding argument on the command-
line unless the --exact option is specified. The FITSDIFF_SETTINGS
environment variable exists to make it easier to change the behavior of
fitsdiff on a global level, such as in a set of regression tests.

1.7.7 Miscellaneous Features

In this chapter, we’ll describe some of the miscellaneous features of PyFITS.

Warning Messages

PyFITS uses the Python warnings module to issue warning messages. The user can suppress the warnings using the
python command line argument -W"ignore" when starting an interactive python session. For example:

python -W"ignore"

The user may also use the command line argument when running a python script as follows:

python -W"ignore" myscript.py

It is also possible to suppress warnings from within a python script. For instance, the warnings issued from a single
call to the writeto convenience function may be suppressed from within a python script as follows:

import warnings
import pyfits

...

warnings.resetwarnings()
warnings.filterwarnings('ignore', category=UserWarning, append=True)

42 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

pyfits.writeto(file, im, clobber=True)
warnings.resetwarnings()
warnings.filterwarnings('always', category=UserWarning, append=True)

...

PyFITS also issues warnings when deprecated API features are used. In Python 2.7 and up deprecation warnings are
ignored by default. To run Python with deprecation warnings enabled, either start Python with the -Wall argument,
or you can enable deprecation warnings specifically with -Wd.

In Python versions below 2.7, if you wish to squelch deprecation warnings, you can start Python with
-Wi::Deprecation. This sets all deprecation warnings to ignored. See http://docs.python.org/using/cmdline.
html#cmdoption-unittest-discover-W for more information on the -W argument.

Differs

The pyfits.diff module contains several facilities for generating and reporting the differences between two FITS
files, or two components of a FITS file.

The FITSDiff class can be used to generate and represent the differences between either two FITS files on disk, or
two existing HDUList objects (or some combination thereof).

Likewise, the HeaderDiff class can be used to find the differences just between two Header objects. Other
available differs include HDUDiff, ImageDataDiff, TableDataDiff, and RawDataDiff.

Each of these classes are instantiated with two instances of the objects that they diff. The returned diff instance
has a number of attributes starting with .diff_ that describe differences between the two objects. See the API
documentation for details on the different differ classes.

1.7.8 Reference Manual

Examples

Converting a 3-color image (JPG) to separate FITS images

#!/usr/bin/env python
import pyfits
import numpy
import Image

#get the image and color information
image = Image.open('hs-2009-14-a-web.jpg')
#image.show()
xsize, ysize = image.size
r, g, b = image.split()
rdata = r.getdata() # data is now an array of length ysize*xsize
gdata = g.getdata()
bdata = b.getdata()

create numpy arrays
npr = numpy.reshape(rdata, (ysize, xsize))
npg = numpy.reshape(gdata, (ysize, xsize))
npb = numpy.reshape(bdata, (ysize, xsize))

write out the fits images, the data numbers are still JUST the RGB

1.7. Users Guide 43

http://docs.python.org/using/cmdline.html#cmdoption-unittest-discover-W
http://docs.python.org/using/cmdline.html#cmdoption-unittest-discover-W

PyFITS Documentation, Release 3.4

Fig. 1.1: Red color information

Fig. 1.2: Green color information

44 Chapter 1. Introduction

../_static/Red.jpg
../_static/Green.jpg

PyFITS Documentation, Release 3.4

Fig. 1.3: Blue color information

scalings; don't use for science
red = pyfits.PrimaryHDU(data=npr)
red.header['LATOBS'] = "32:11:56" # add spurious header info
red.header['LONGOBS'] = "110:56"
red.writeto('red.fits')

green = pyfits.PrimaryHDU(data=npg)
green.header['LATOBS'] = "32:11:56"
green.header['LONGOBS'] = "110:56"
green.writeto('green.fits')

blue = pyfits.PrimaryHDU(data=npb)
blue.header['LATOBS'] = "32:11:56"
blue.header['LONGOBS'] = "110:56"
blue.writeto('blue.fits')

1.8 Other Information

1.8.1 Appendix

Header Interface Transition Guide

PyFITS v3.1 included an almost complete rewrite of the Header interface. Although the new interface is largely
compatible with the old interface (whether due to similarities in the design, or backwards-compatibility support), there
are enough differences that a full explanation of the new interface is merited.

The Trac ticket discussing the initial motivation and changes to be made to the Header class is #64. It may be worth
reading for some of the background to this work, though this document contains a more complete description of the
“final” product (which will continue to evolve).

Background

Prior to 3.1, PyFITS users interacted with FITS headers by way of three different classes: Card, CardList, and
Header.

The Card class represents a single header card with a keyword, value, and comment. It also contains all the machinery
for parsing FITS header cards, given the 80 character string, or “card image” read from the header.

The CardList class is actually a subclass of Python’s list built-in. It was meant to represent the actual list of cards
that make up a header. That is, it represents an ordered list of cards in the physical order that they appear in the header.

1.8. Other Information 45

../_static/Blue.jpg
https://aeon.stsci.edu/ssb/trac/pyfits/ticket/64

PyFITS Documentation, Release 3.4

It supports the usual list methods for inserting and appending new cards into the list. It also supports dict-like
keyword access, where cardlist['KEYWORD'] would return the first card in the list with the given keyword.

A lot of the functionality for manipulating headers was actually buried in the CardList class. The Header class was
more of a wrapper around CardList that added a little bit of abstraction. It also implemented a partial dict-like interface,
though for Headers a keyword lookup returned the header value associated with that keyword, and not the Card object.
Though almost every method on the Header class was just performing some operations on the underlying CardList.

The problem is that there were certain things one could only do by directly accessing the CardList, such as look up
the comments on a card, or access cards that have duplicate keywords, such as HISTORY. Another long-standing
misfeature that slicing a Header object actually returned a CardList object, rather than a new Header. For all but the
most simple use cases, working with CardList objects was largely unavoidable.

But it was realized that CardList is really an implementation detail not representing any element of a FITS file distinct
from the header itself. Users familiar with the FITS format know what a header is, but it’s not clear how a “card list”
is distinct from that, or why operations go through the Header object, while some have to be performed through the
CardList.

So the primary goal of this redesign was eliminate the CardList class altogether, and make it possible for users
to perform all header manipulations directly through Header objects. It also tries to present headers as similar as
possible to more a more familiar data structure–an ordered mapping (or OrderedDict in Python) for ease of use
by new users less familiar with the FITS format. Though there are still many added complexities for dealing with the
idiosyncrasies of the FITS format.

Deprecation Warnings

A few old methods on the Header class have been marked as deprecated, either because they have been renamed to
a more PEP 8-compliant name, or because have become redundant due to new features. To check if your code is using
any deprecated methods or features, run your code with python -Wd. This will output any deprecation warnings to
the console.

Two of the most common deprecation warnings related to Headers are for:

• :meth:Header.has_key–this has actually been deprecated since PyFITS 3.0, just as Python’s dict.
has_key is deprecated. For checking a key’s presence in a mapping object like dict or Header, use the
key in d syntax. This has long been the preference in Python.

• :meth:Header.ascardlist and Header.ascard–these were used to access the CardList object un-
derlying a header. They should still work, and return a skeleton CardList implementation that should support
most of the old CardList functionality. But try removing as much of this as possible. If direct access to the
Card objects making up a header is necessary, use Header.cards, which returns an iterator over the cards.
More on that below.

New Header Design

The new Header class is designed to work as a drop-in replacement for a dict via duck typing. That is, although
it is not a subclass of dict, it implements all the same methods and interfaces. In particular, it is similar to an
OrderedDict in that the order of insertions is preserved. However, Header also supports many additional features
and behaviors specific to the FITS format. It should also be noted that while the old Header implementation also had
a dict-like interface, it did not implement the entire dict interface as the new Header does.

Although the new Header is used like a dict/mapping in most cases, it also supports a list interface. The list-like
interface is a bit idiosyncratic in that in some contexts the Header acts like a list of values, in some like a list of
keywords, and in a few contexts like a list of Card objects. This may be the most difficult aspect of the new design,
but there is logic to it.

As with the old Header implementation, integer index access is supported: header[0] returns the value of the first
keyword. However, the Header.index() method treats the header as though it’s a list of keywords, and returns
the index of a given keyword. For example:

46 Chapter 1. Introduction

https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/collections.html#collections.OrderedDict
http://www.python.org/dev/peps/pep-0008/
https://docs.python.org/2/library/stdtypes.html#dict.has_key
https://docs.python.org/2/library/stdtypes.html#dict.has_key
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/stdtypes.html#dict
http://en.wikipedia.org/wiki/Duck_typing
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/collections.html#collections.OrderedDict

PyFITS Documentation, Release 3.4

>>> header.index('BITPIX')
2

Header.count() is similar to list.count, and also takes a keyword as its argument:

>>> header.count('HISTORY')
20

A good rule of thumb is that any item access using square brackets [] returns value in the header, whether using
keyword or index lookup. Methods like index() and count() that deal with the order and quantity of items in
the Header generally work on keywords. Finally, methods like insert() and append() that add new items to the
header work on cards.

Aside from the list-like methods, the new Header class works very similarly to the old implementation for most basic
use cases and should not present too many surprises. There are differences, however:

• As before, the Header() initializer can take a list of Card objects with which to fill the header. However, now
any iterable may be used. It is also important to note that any Header method that accepts Card objects can
also accept 2-tuples or 3-tuples in place of Cards. That is, either a (keyword, value, comment) tuple or
a (keyword, value) tuple (comment is assumed blank) may be used anywhere in place of a Card object.
This is even preferred, as it simply involves less typing. For example:

>>> header = pyfits.Header([('A', 1), ('B', 2), ('C', 3, 'A comment')])
>>> header
A = 1
B = 2
C = 3 / A comment

• As demonstrated in the previous example, the repr() for a Header, that is the text that is displayed when
entering a Header object in the Python console as an expression, shows the header as it would appear in a FITS
file. This inserts newlines after each card so that it is easily readable regardless of terminal width. It is not
necessary to use print header to view this. Simply entering header displays the header contents as it
would appear in the file (sans the END card).

• len(header) is now supported (previously it was necessary to do len(header.ascard). This returns
the total number of cards in the header, including blank cards, but excluding the END card.

• FITS supports having duplicate keywords, although they are generally in error except for commentary keywords
like COMMENT and HISTORY. PyFITS now supports reading, updating, and deleting duplicate keywords:
Instead of using the keyword by itself, use a (keyword, index) tuple. For example ('HISTORY', 0)
represents the first HISTORY card, ('HISTORY', 1) represents the second HISTORY card, and so on. In
fact, when a keyword is used by itself, it’s really just shorthand for (keyword, 0). Its is now possible to
delete an accidental duplicate like so:

>>> del header[('NAXIS', 1)]

This will remove an accidental duplicate NAXIS card from the header.

• Even if there are duplicate keywords, keyword lookups like header['NAXIS'] will always return the value
associated with the first copy of that keyword, with one exception: Commentary keywords like COMMENT
and HISTORY are expected to have duplicates. So header['HISTORY'], for example, returns the whole
sequence of HISTORY values in the correct order. This list of values can be sliced arbitrarily. For example, to
view the last 3 history entries in a header:

>>> hdulist[0].header['HISTORY'][-3:]
reference table oref$laf13367o_pct.fits
reference table oref$laf13369o_apt.fits

Heliocentric correction = 16.225 km/s

1.8. Other Information 47

PyFITS Documentation, Release 3.4

• Subscript assignment can now be used to add new keywords to the header. Just as with a normal dict,
header['NAXIS'] = 1 will either update the NAXIS keyword if it already exists, or add a new NAXIS
keyword with a value of 1 if it does not exist. In the old interface this would return a KeyError if NAXIS did
not exist, and the only way to add a new keyword was through the update() method.

By default, new keywords added in this manner are added to the end of the header, with a few FITS-specific
exceptions:

– If the header contains extra blank cards at the end, new keywords are added before the blanks.

– If the header ends with a list of commentary cards–for example a sequence of HISTORY cards–those are
kept at the end, and new keywords are inserted before the commentary cards.

– If the keyword is a commentary keyword like COMMENT or HISTORY (or an empty string for blank
keywords), a new commentary keyword is always added, and appended to the last commentary keyword
of the same type. For example, HISTORY keywords are always placed after the last history keyword:

>>> header = pyfits.Header()
>>> header['COMMENT'] = 'Comment 1'
>>> header['HISTORY'] = 'History 1'
>>> header['COMMENT'] = 'Comment 2'
>>> header['HISTORY'] = 'History 2'
>>> header
COMMENT Comment 1
COMMENT Comment 2
HISTORY History 1
HISTORY History 2

These behaviors represent a sensible default behavior for keyword assignment, and represents the same behavior
as update() in the old Header implementation. The default behaviors may still be bypassed through the use
of other assignment methods like Header.set() and Header.append() described later.

• It is now also possible to assign a value and a comment to a keyword simultaneously using a tuple:

>>> header['NAXIS'] = (2, 'Number of axis')

This will update the value and comment of an existing keyword, or add a new keyword with the given value and
comment.

• There is a new Header.comments attribute which lists all the comments associated with keywords in the
header (not to be confused with COMMENT cards). This allows viewing and updating the comments on specific
cards:

>>> header.comments['NAXIS']
Number of axis
>>> header.comments['NAXIS'] = 'Number of axes'
>>> header.comments['NAXIS']
Number of axes

• When deleting a keyword from a header, don’t assume that the keyword already exists. In the old Header
implementation this would just silently do nothing. For backwards-compatibility it is still okay to delete a non-
existent keyword, but a warning will be raised. In the future this will be changed so that trying to delete a
non-existent keyword raises a KeyError. This is for consistency with the behavior of Python dicts. So unless
you know for certain that a keyword exists before deleting it, it’s best to do something like:

>>> try:
... del header['BITPIX']

48 Chapter 1. Introduction

https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/exceptions.html#exceptions.KeyError
https://docs.python.org/2/library/exceptions.html#exceptions.KeyError

PyFITS Documentation, Release 3.4

... except KeyError:

... pass

Or if you prefer to look before you leap:

>>> if 'BITPIX' in header:
... del header['BITPIX']

• del header now supports slices. For example, to delete the last three keywords from a header:

>>> del header[-3:]

• Two headers can now be compared for equality–previously no two Header objects were the same. Now they
compare as equal if they contain the exact same content. That is, this requires strict equality.

• Two headers can now be added with the ‘+’ operator, which returns a copy of the left header extended by the
right header with extend(). Assignment addition is also possible.

• The Header.update() method used commonly with the old Header API has been renamed to Header.set().
The primary reason for this change is very simple: Header implements the dict interface, which already has a
method called update(), but that behaves differently from the old Header.update().

The details of the new update() can be read in the API docs, but it is very similar to dict.update. It also
supports backwards compatibility with the old update() by analysis of the arguments passed to it, so existing
code will not break immediately. However, this will cause a deprecation warning to be output if they’re enabled.
It is best, for starters, to replace all update() calls with set(). Recall, also, that direct assignment is now possible
for adding new keywords to a header. So by and large the only reason to prefer using Header.set() is its
capability of inserting or moving a keyword to a specific location using the before or after arguments.

• Slicing a Header with a slice index returns a new Header containing only those cards contained in the slice. As
mentioned earlier, it used to be that slicing a Header returned a card list–something of a misfeature. In general,
objects that support slicing ought to return an object of the same type when you slice them.

Likewise, wildcard keywords used to return a CardList object. Now they return a new Header–similarly to a
slice. For example:

>>> header['NAXIS*']

returns a new header containing only the NAXIS and NAXISn cards from the original header.

Transition Tips

The above may seem like a lot, but the majority of existing code using PyFITS to manipulate headers should not need
to be updated, at least not immediately. The most common operations still work the same.

As mentioned above, it would be helpful to run your code with python -Wd to enable deprecation warnings–that
should be a good idea of where to look to update your code.

If your code needs to be able to support older versions of PyFITS simultaneously with PyFITS 3.1, things are slightly
trickier, but not by much–the deprecated interfaces will not be removed for several more versions because of this.

• The first change worth making, which is supported by any PyFITS version in the last several years, is remove
any use of :meth:Header.has_key and replace it with keyword in header syntax. It’s worth making
this change for any dict as well, since dict.has_key is deprecated. Running the following regular expression
over your code may help with most (but not all) cases:

s/([^]+)\.has_key\(([^)]+)\)/\2 in \1/

1.8. Other Information 49

https://docs.python.org/2/library/stdtypes.html#dict
https://docs.python.org/2/library/stdtypes.html#dict.update
https://docs.python.org/2/library/stdtypes.html#dict.has_key

PyFITS Documentation, Release 3.4

• If possible, replace any calls to Header.update() with Header.set() (though don’t bother with this if you need to
support older PyFITS versions). Also, if you have any calls to Header.update() that can be replaced with simple
subscript assignments (eg. header['NAXIS'] = (2, 'Number of axes')) do that too, if possible.

• Find any code that uses header.ascard or header.ascardlist(). First ascertain whether that code
really needs to work directly on Card objects. If that is definitely the case, go ahead and replace those with
header.cards–that should work without too much fuss. If you do need to support older versions, you may
keep using header.ascard for now.

• In the off chance that you have any code that slices a header, it’s best to take the result of that and create a new
Header object from it. For example:

>>> new_header = pyfits.Header(old_header[2:])

This avoids the problem that in PyFITS <= 3.0 slicing a Header returns a CardList by using the result to initialize
a new Header object. This will work in both cases (in PyFITS 3.1, initializing a Header with an existing Header
just copies it, a la list).

• As mentioned earlier, locate any code that deletes keywords with del, and make sure they either look before
they leap (if keyword in header:) or ask forgiveness (try/except KeyError:).

Other Gotchas

• As mentioned above it is not necessary to enter print header to display a header in an interactive Python
prompt. Simply entering >>> header by itself is sufficient. Using print usually will not display the header
readably, because it does not include line-breaks between the header cards. The reason is that Python has two
types of string representations: One is returned when one calls str(header) which happens automatically
when you print a variable. In the case of the Header class this actually returns the string value of the header
as it is written literally in the FITS file, which includes no line breaks.

The other type of string representation happens when one calls repr(header). The repr of an object is
just meant to be a useful string “representation” of the object; in this case the contents of the header but with
linebreaks between the cards and with the END card and padding trailing padding stripped off. This happens
automatically when one enters a variable at the Python prompt by itself without a print call.

• The current version of the FITS Standard (3.0) states in section 4.2.1 that trailing spaces in string values in
headers are not significant and should be ignored. PyFITS < 3.1 did treat treat trailing spaces as significant. For
example if a header contained:

KEYWORD1= ‘Value ‘

then header['KEYWORD1'] would return the string 'Value ' exactly, with the trailing spaces intact. The
new Header interface fixes this by automatically stripping trailing spaces, so that header['KEYWORD1']
would return just 'Value'.

There is, however, one convention used by the IRAF ccdmosaic task for representing its TNX World Coordinate
System and ZPX World Coordinate System non-standard WCS’ that uses a series of keywords in the form
WATj_nnn which store a text description of coefficients for a non-linear distortion projection. It uses its own
microformat for listing the coefficients as a string, but the string is long, and thus broken up into several of these
WATj_nnn keywords. Correct recombination of these keywords requires treating all whitespace literally. This
convention either overlooked or predated the prescribed treatment of whitespace in the FITS standard.

To get around this issue a global variable pyfits.STRIP_HEADER_WHITESPACE was introduced. Tem-
porarily setting pyfits.STRIP_HEADER_WHITESPACE = False before reading keywords affected by
this issue will return their values with all trailing whitespace intact.

A future version of PyFITS may be able to detect use of conventions like this contextually and behave according
to the convention, but in most cases the default behavior of PyFITS is to behave according to the FITS Standard.

50 Chapter 1. Introduction

https://docs.python.org/2/library/functions.html#repr
http://iraf.noao.edu/projects/ccdmosaic/tnx.html
http://iraf.noao.edu/projects/ccdmosaic/tnx.html
http://iraf.noao.edu/projects/ccdmosaic/zpx.html

PyFITS Documentation, Release 3.4

PyFITS FAQ

Contents

• PyFITS FAQ

– General Questions

* What is PyFITS?

* What is the development status of PyFITS?

– Build and Installation Questions

* Is PyFITS available on Windows?

* Where is the Windows installer for version X of PyFITS on version Y of Python?

* Why is the PyFITS installation failing on Windows?

* On Windows Vista or later why can’t the installer find Python in the registry?

* How do I install PyFITS from source on Windows?

* Is PyFITS available for Mac OSX?

* Why is the PyFITS installation failing on OSX Lion (10.7)?

* How do I find out what version of PyFITS I have installed?

* How do I run the tests for PyFITS?

* How can I build a copy of the PyFITS documentation for my own use?

– Usage Questions

* Something didn’t work as I expected. Did I do something wrong?

* PyFITS crashed and output a long string of code. What do I do?

* Why does opening a file work in CFITSIO, ds9, etc. but not in PyFITS?

* How do I turn off the warning messages PyFITS keeps outputting to my console?

* How can I check if my code is using deprecated PyFITS features?

* What convention does PyFITS use for indexing, such as of image coordinates?

* How do I open a very large image that won’t fit in memory?

* How can I create a very large FITS file from scratch?

* How do I create a multi-extension FITS file from scratch?

* Why is an image containing integer data being converted unexpectedly to floats?

* Why am I losing precision when I assign floating point values in the header?

* I’m opening many FITS files in a loop and getting OSError: Too many open files

General Questions

What is PyFITS?

PyFITS is a library written in, and for use with the Python programming language for reading, writing, and manipu-
lating FITS formatted files. It includes a high-level interface to FITS headers with the ability for high and low-level

1.8. Other Information 51

http://www.stsci.edu/institute/software_hardware/pyfits
http://www.python.org
http://fits.gsfc.nasa.gov/

PyFITS Documentation, Release 3.4

manipulation of headers, and it supports reading image and table data as Numpy arrays. It also supports more obscure
and non-standard formats found in some FITS files.

PyFITS includes two command-line utilities for working with FITS files: fitscheck, which can verify and write FITS
checksums; and fitsdiff, which can analyze and display the differences between two FITS files.

Although PyFITS is written mostly in Python, it includes an optional module written in C that’s required to read/write
compressed image data. However, the rest of PyFITS functions without this extension module.

What is the development status of PyFITS?

PyFITS is written and maintained by the Science Software Branch at the Space Telescope Science Institute, and is
licensed by AURA under a 3-clause BSD license (see LICENSE.txt in the PyFITS source code).

PyFITS’ current primary developer and active maintainer is Erik Bray, though patch submissions are welcome from
anyone. It has a Trac site where the source code can be browsed, and where bug reports may be submitted. The source
code resides primarily in an SVN repository which allows anonymous checkouts, though a Git mirror also exists.
PyFITS also has a GitHub site.

The current stable release series is 3.0.x. Each 3.0.x release tries to contain only bug fixes, and to not introduce any
significant behavioral or API changes (though this isn’t guaranteed to be perfect). The upcoming 3.1 release will
contain new features and some API changes, though will try maintain as much backwards-compatibility as possible.
After the 3.1 release there may be further 3.0.x releases for bug fixes only where possible. Older versions of PyFITS
(2.4 and earlier) are no longer actively supported.

PyFITS is also included as a major component of upcoming Astropy project as the astropy.io.fitsmodule. The
goal is for Astropy to eventually serve as a drop-in replacement for PyFITS (it even includes a legacy-compatibility
mode where the astropy.io.fits module can still be imported as pyfits. However, for the time being PyFITS
will still be released as an independent product as well, until such time that the Astropy project proves successful and
widely-adopted.

Build and Installation Questions

Is PyFITS available on Windows?

Yes–the majority of PyFITS is pure Python, and can be installed and used on any platform that supports Python
(>=2.5). However, PyFITS includes an optional C extension module for reading/writing compressed image HDUs. As
most Windows systems are not configured to compile C source code, binary installers are also available for Windows.
Though PyFITS can also be installed from source even on Windows systems without a compiler by disabling the
compression module. See How do I install PyFITS from source on Windows? for more details.

Where is the Windows installer for version X of PyFITS on version Y of Python?

Every official PyFITS build for Windows is eventually uploaded to PyPI. This includes builds for every major Python
release from 2.5.x and up, except for 3.0 as there is no official Numpy release for Python 3.0 on Windows. The one
binary module included in these builds was linked with Numpy 1.6.1, though it should work with other recent Numpy
versions.

Sometimes the Windows binary installers don’t go up immediately after every PyFITS release. But if they appear
missing they should go up within another business day or two. This has gotten better with recent releases thanks to
some automation.

52 Chapter 1. Introduction

http://numpy.scipy.org/
http://www.stsci.edu/
http://www.aura-astronomy.org/
http://en.wikipedia.org/wiki/BSD_licenses#3-clause_license_.28.22New_BSD_License.22_or_.22Modified_BSD_License.22.29
https://trac.assembla.com/pyfits/browser/trunk/LICENSE.txt
mailto:embray@stsci.edu
https://trac.assembla.com/pyfits/
https://subversion.assembla.com/svn/pyfits/
git://github.com/spacetelescope/PyFITS.git
https://github.com/spacetelescope/PyFITS
http://www.astropy.org/
http://pypi.python.org/pypi/pyfits

PyFITS Documentation, Release 3.4

Why is the PyFITS installation failing on Windows?

The most likely cause of installation failure on Windows is if building/ installing from source fails due to the lack of a
compiler for the optional C extension module. Such a failure would produce an error that looks something like:

building 'pyfits.compression' extension
error: Unable to find vcvarsall.bat

Your best bet in cases like this is to install from one of the binary executable installers available for Windows on PyPI.
However, there are still cases where you may need to install from source: For example, it’s difficult to use the binary
installers with virtualenv. See How do I install PyFITS from source on Windows? for more detailed instructions on
building on Windows.

See below for a few answers to other specific questions about Windows installation. For other installation errors not
mentioned by this FAQ, please contact help@stsci.edu with a description of the problem.

On Windows Vista or later why can’t the installer find Python in the registry?

This is a common issue with Windows installers for Python packages that do not support the new User Access Control
(UAC) framework added in Windows Vista and later. In particular, when a Python is installed “for all users” (as
opposed to for a single user) it adds entries for that Python installation under the HKEY_LOCAL_MACHINE (HKLM)
hierarchy and not under the HKEY_CURRENT_USER (HKCU) hierarchy. However, depending on your UAC settings,
if the PyFITS installer is not executed with elevated privileges it will not be able to check in HKLM for the required
information about your Python installation.

In short: If you encounter this problem it’s because you need the appropriate entries in the Windows registry for
Python. You can download this script and execute it with the same Python as the one you want to install PyFITS into.
For example to add the missing registry entries to your Python 2.7:

C:\>C:\Python27\python.exe C:\Path\To\Downloads\win_register_python.py

How do I install PyFITS from source on Windows?

There are a few options for building/installing PyFITS from source on Windows.

First of all, as mentioned elsewhere, most of PyFITS is pure-Python. Only the C extension module for reading/writing
compressed images needs to be compiled. If you don’t need compressed image support, PyFITS can be installed
without it.

In future releases this will hopefully be even easier, but for now it’s necessary to edit one file in order to disable the
extension module. Locate the setup.cfg file at the root of the PyFITS source code. This is the file that describes what
needs to be installed for PyFITS. Find the line that reads [extension=pyfits.compression]. This is the
section that lists what needs to be compiled for the extension module. Comment out every line in the extension section
by prepending it with a # character (stopping at the [build_ext] line). It should look like this:

...
scripts = scripts/fitscheck

#[extension=pyfits.compression]
#sources =
src/compress.c
src/fits_hcompress.c
src/fits_hdecompress.c
src/fitsio.c
src/pliocomp.c

1.8. Other Information 53

mailto:help@stsci.edu
https://gist.github.com/embray/6042780#file-win_register_python-py
https://trac.assembla.com/pyfits/browser/trunk/setup.cfg

PyFITS Documentation, Release 3.4

src/compressionmodule.c
src/quantize.c
src/ricecomp.c
src/zlib.c
src/inffast.c
src/inftrees.c
src/trees.c
#include_dirs = numpy
Squelch a handful of warnings (which actually cause pip to break in tox and
other environments due to gcc outputting non-ASCII characters in some
terminals; see python issue6135)
#extra_compile_args =
-Wno-unused-function
-Wno-strict-prototypes

[build_ext]
...

With these lines properly commented out, rerun python setup.py install, and it should skip build-
ing/installing the compression module. PyFITS will work fine with out it, but will issue warnings when encountering
a compressed image that it can’t read.

If you do need to compile the compression module, this can still be done on Windows with just a little extra work. By
default, Python tries to compile extension modules with the same compiler that Python itself was compiled with.

To check what compiler Python was built with, the easiest way is to run:

python -c "import platform; print platform.python_compiler()"

For the official builds of recent Python versions this should be something like:

MSC v.1500 32 bit (Intel)

For unofficial Windows distributions of Python, such as ActiveState, EPD, or Cygwin, your mileage may vary.

As it so happens, MSC v.15xx is the compiler version included with Visual C++ 2008. Luckily, Microsoft distributes
a free version of this as Visual C++ Express Edition. So for building Python extension modules on Windows this is
one of the simpler routes. Just install the free VC++ 2008. It should install a link to the Start Menu at All Programs-
>Microsoft Visual C++ Express Edition->Visual Studio Tools->Visual Studio 2008 Command Prompt.

If you run that link, it should launch a command prompt with reasonable environment variables set up for using Visual
C++. Then change directories to your copy of the PyFITS source code and re-run python setup.py install.
You may also need to comment out the extra_compile_args option in the setup.cfg file (its value is the two
lines under it after the equal sign). Though the need to manually disable this option for MSC will be fixed in a future
PyFITS version.

Another option is to use gcc through MinGW, which is in fact how the PyFITS releases for Windows are currently
built. This article provides a good overview of how to set this up: http://seewhatever.de/blog/?p=217

Is PyFITS available for Mac OSX?

Yes, but there is no binary package specifically for OSX (such as a .dmg, for example). For OSX just download,
build, and install the source package. This is generally easier on OSX than it is on Windows, thanks to the more
developer-friendly environment.

The only major problem with building on OSX seems to occur for some users of 10.7 Lion, with misconfigured
systems. See the next question for details on that.

54 Chapter 1. Introduction

http://www.microsoft.com/visualstudio/en-us/products/2008-editions/express
http://www.mingw.org/
http://seewhatever.de/blog/?p=217

PyFITS Documentation, Release 3.4

To build PyFITS without the optional compression module, follow the instructions in How do I install PyFITS from
source on Windows?.

Why is the PyFITS installation failing on OSX Lion (10.7)?

There is a common problem that affects all Python packages with C extension modules (not just PyFITS) for some
users of OSX 10.7. What usually occurs is that when building the package several errors will be output, ending with
something like:

unable to execute gcc-4.2: No such file or directory
error: command 'gcc-4.2' failed with exit status 1

There are a few other errors like it that can occur. The problem is that when you build a C extension, by default it will
try to use the same compiler that your Python was built with. In this case, since you’re using the 32-bit universal build
of Python it’s trying to use the older gcc-4.2 and is trying to build with PPC support, which is no longer supported in
Xcode.

In this case the best solution is to install the x86-64 build of Python for OSX (http://www.python.org/ftp/python/2.7.2/
python-2.7.2-macosx10.6.dmg for 2.7.2). In fact, this is the build version officially supported for use on Lion. Other,
unofficial Python builds such as from MacPorts may also work.

How do I find out what version of PyFITS I have installed?

To output the PyFITS version from the command line, run:

$ python -c 'import pyfits; print(pyfits.__version__)'

When PyFITS is installed with stsci_python, it is also possible to check the installed SVN revision by importing
pyfits.svn_version. Then use dir(pyfits.svn_version) to view a list of available attributes. A feature
like this will be available soon in standalone versions of PyFITS as well.

How do I run the tests for PyFITS?

Currently the best way to run the PyFITS tests is to download the source code, either from a source release or from
version control, and to run the tests out of the source. It is not necessary to install PyFITS to run the tests out of the
source code.

The PyFITS tests require nose to run. nose can be installed on any Python version using pip or easy_install. See the
nose documentation for more details.

With nose installed, it is simple to run the tests on Python 2.x:

$ python setup.py nosetests

If PyFITS has not already been built, this will build it automatically, then run the tests. This does not cause PyFITS to
be installed.

On Python 3.x the situation is a little more complicated. This is due to the fact that PyFITS’ source code is not Python
3-compatible out of the box, but has to be run through the 2to3 converter. Normally when you build/install PyFITS
on Python 3.x, the 2to3 conversion is performed automatically. Unfortunately, nose does not know to use the 2to3’d
source code, and will instead try to import and test the unconverted source code.

To work around this, it is necessary to first build PyFITS (which will run the source through 2to3):

1.8. Other Information 55

http://www.python.org/ftp/python/2.7.2/python-2.7.2-macosx10.6.dmg
http://www.python.org/ftp/python/2.7.2/python-2.7.2-macosx10.6.dmg
http://astrofrog.github.com/macports-python/
http://readthedocs.org/docs/nose/en/latest/

PyFITS Documentation, Release 3.4

$ python setup.py build

Then run the nosetests command, but pointing it to the build tree where the 2to3’d source code and tests reside,
using the -w switch:

$ python setup.py nosetests -w build/lib.linux-x86_64-3.2

where the exact path of the build/lib.* directory will vary depending on your platform and Python version.

How can I build a copy of the PyFITS documentation for my own use?

First of all, it’s worth pointing out that the documentation for the latest version of PyFITS can always be downloaded
in PDF form or browsed online in HTML. There are also plans to make the docs for older versions of PyFITS, as well
as up-to-date development docs available online.

Otherwise, to build your own version of the docs either for offline use, or to build the development version of the docs
there are a few reqirements. The most import requirement is Sphinx, which is the toolkit used to generate the docu-
mentation. Use pip install sphinx or easy_install sphinx to install Sphinx. Using pip or easy_install
will install the correct versions of Sphinx’s basic dependencies, which include docutils, Jinja2, and Pygments.

Next, the docs require STScI’s custom Sphinx theme, stsci.sphinxext. It’s a simple pure-Python pacakge and can be
installed with pip or easy_install.

The next requirement is numpydoc, which is not normally installed with Numpy itself. Install it with pip or
easy_install. Numpy is also required, though it is of course a requirement of PyFITS itself.

Finally, it is necessary to have matplotlib, specifically for matplotlib.sphinxext. This is perhaps the most onerous
requirement if you do not already have it instaled. Please refer to the matplotlib documentation for details on down-
loading and installing matplotlib.

It is also necessary to install PyFITS itself in order to generate the API documentation. For this reason, it is a good
idea to install Sphinx and PyFITS into a virtualenv in order to build the development version of the docs (see below).

With all the requirements installed, change directories into the docs/ directory in the PyFITS source code, and run:

$ make html

to build the HTML docs, which will be output to build/html. To build the docs in other formats, please refer to
the Sphinx documentation.

To summarize, assuming that you already have Numpy and Matplotlib on your Python installation, perform the fol-
lowing steps from within the PyFITS source code:

$ virtualenv --system-site-packages pyfits-docs
$ source pyfits-docs/bin/activate
$ pip install sphinx
$ pip install numpydoc
$ pip install stsci.sphinxext
$ python setup.py install pyfits
$ cd docs/
$ make html

56 Chapter 1. Introduction

http://stsdas.stsci.edu/download/docs/The_PyFITS_Handbook.pdf
http://packages.python.org/pyfits
http://sphinx.pocoo.org/
http://pypi.python.org/pypi/stsci.sphinxext
http://pypi.python.org/pypi/numpydoc
http://matplotlib.sourceforge.net/
http://pypi.python.org/pypi/virtualenv

PyFITS Documentation, Release 3.4

Usage Questions

Something didn’t work as I expected. Did I do something wrong?

Possibly. But if you followed the documentation and things still did not work as expected, it is entirely possible that
there is a mistake in the documentation, a bug in the code, or both. So feel free to report it as a bug. There are also
many, many corner cases in FITS files, with new ones discovered almost every week. PyFITS is always improving,
but does not support all cases perfectly. There are some features of the FITS format (scaled data, for example) that are
difficult to support correctly and can sometimes cause unexpected behavior.

For the most common cases, however, such as reading and updating FITS headers, images, and tables, PyFITS should
be very stable and well-tested. Before every PyFITS release it is ensured that all its tests pass on a variety of platforms,
and those tests cover the majority of use-cases (until new corner cases are discovered).

PyFITS crashed and output a long string of code. What do I do?

This listing of code is what is knows as a stack trace (or in Python parlance a “traceback”). When an unhandled
exception occurs in the code, causing the program to end, this is a way of displaying where the exception occurred and
the path through the code that led to it.

As PyFITS is meant to be used as a piece in other software projects, some exceptions raised by PyFITS are by design.
For example, one of the most common exceptions is a KeyError when an attempt is made to read the value of a
non-existent keyword in a header:

>>> import pyfits
>>> h = pyfits.Header()
>>> h['NAXIS']
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "/path/to/pyfits/header.py", line 125, in __getitem__
return self._cards[self._cardindex(key)].value

File "/path/to/pyfits/header.py", line 1535, in _cardindex
raise KeyError("Keyword %r not found." % keyword)

KeyError: "Keyword 'NAXIS' not found."

This indicates that something was looking for a keyword called “NAXIS” that does not exist. If an error like this
occurs in some other software that uses PyFITS, it may indicate a bug in that software, in that it expected to find a
keyword that didn’t exist in a file.

Most “expected” exceptions will output a message at the end of the traceback giving some idea of why the exception
occurred and what to do about it. The more vague and mysterious the error message in an exception appears, the more
likely that it was caused by a bug in PyFITS. So if you’re getting an exception and you really don’t know why or what
to do about it, feel free to report it as a bug.

Why does opening a file work in CFITSIO, ds9, etc. but not in PyFITS?

As mentioned elsewhere in this FAQ, there are many unusual corner cases when dealing with FITS files. It’s possible
that a file should work, but isn’t support due to a bug. Sometimes it’s even possible for a file to work in an older
version of PyFITS, but not a newer version due to a regression that isn’t tested for yet.

Another problem with the FITS format is that, as old as it is, there are many conventions that appear in files from
certain sources that do not meet the FITS standard. And yet they are so common-place that it is necessary to support
them in any FITS readers. CONTINUE cards are one such example. There are non-standard conventions supported
by PyFITS that are not supported by CFITSIO and vice-versa. You may have hit one of those cases.

1.8. Other Information 57

http://en.wikipedia.org/wiki/Stack_trace
https://docs.python.org/2/library/exceptions.html#exceptions.KeyError

PyFITS Documentation, Release 3.4

If PyFITS is having trouble opening a file, a good way to rule out whether not the problem is with PyFITS is to run
the file through the fitsverify. For smaller files you can even use the online FITS verifier. These use CFITSIO under
the hood, and should give a good indication of whether or not there is something erroneous about the file. If the file is
malformatted, fitsverify will output errors and warnings.

If fitsverify confirms no problems with a file, and PyFITS is still having trouble opening it (especially if it produces a
traceback) then it’s likely there is a bug in PyFITS.

How do I turn off the warning messages PyFITS keeps outputting to my console?

PyFITS uses Python’s built-in warnings subsystem for informating about exceptional conditions in the code that are
recoverable, but that the user may way to be informed of. One of the most common warnings in PyFITS occurs when
updating a header value in such a way that the comment must be truncated to preserve space:

Card is too long, comment is truncated.

Any console output generated by PyFITS can be assumed to be from the warnings subsystem. Fortunately there are
two easy ways to quiet these warnings:

1. Using the -W option to the python executable. Just start Python like:

$ python -Wignore <scriptname>

or for short:

$ python -Wi <scriptname>

and all warning output will be silenced.

2. Warnings can be silenced programatically from anywhere within a script. For example, to disable
all warnings in a script, add something like:

import warnings
warnings.filterwarnings('ignore')

Another option, instead of ignore is once, which causes any warning to be output only once within the
session, rather than repeatedly (such as in a loop). There are many more ways to filter warnings with -W
and the warnings module. For example, it is possible to silence only specific warning messages. Please
refer to the Python documentation for more details, or ask at help@stsci.edu.

How can I check if my code is using deprecated PyFITS features?

PyFITS 3.0 included a major reworking of the code and some of the APIs. Most of the differences are just renaming
functions to use a more consistent naming scheme. For example the createCard() function was renamed to
create_card() for consistency with a lower_case_underscore naming scheme for functions.

There are a few other functions and attributes that were deprecated either because they were renamed to something
simpler or more consistent, or because they were redundant or replaced.

Eventually all deprecated features will be removed in future PyFITS versions (though there will be significant warn-
ingsin advance). It is best to check whether your code is using deprecatd features sooner rather than later.

On Python 2.5, all deprecation warnigns are displayed by default, so you may have already discovered them. However,
on Python 2.6 and up, deprecation warnings are not displayed by default. To show all deprecation warnings, start
Python like:

58 Chapter 1. Introduction

http://heasarc.gsfc.nasa.gov/docs/software/ftools/fitsverify/
http://fits.gsfc.nasa.gov/fits_verify.html
http://docs.python.org/library/warnings.html
http://docs.python.org/using/cmdline.html#cmdoption-W
mailto:help@stsci.edu

PyFITS Documentation, Release 3.4

$ python -Wd <scriptname>

Most deprecation issues can be fixed with a simple find/replace. The warnings displayed will let you know how to
replace the old interface.

If you have a lot of old code that was written for older versions of PyFITS it would be worth doing this. PyFITS 3.1
introduces a significant rewrite of the Header interface, and contains even more deprecations.

What convention does PyFITS use for indexing, such as of image coordinates?

All arrays and sequences in PyFITS use a zero-based indexing scheme. For example, the first keyword in a header is
header[0], not header[1]. This is in accordance with Python itself, as well as C, on which PyFITS is based.

This may come as a surprise to veteran FITS users coming from IRAF, where 1-based indexing is typically used, due
to its origins in FORTRAN.

Likewise, the top-left pixel in an N x N array is data[0,0]. The indices for 2-dimensional arrays are row-major
order, in that the first index is the row number, and the second index is the column number. Or put in terms of axes,
the first axis is the y-axis, and the second axis is the x-axis. This is the opposite of column-major order, which is used
by FORTRAN and hence FITS. For example, the second index refers to the axis specified by NAXIS1 in the FITS
header.

In general, for N-dimensional arrays, row-major orders means that the right-most axis is the one that varies the fastest
while moving over the array data linearly. For example, the 3-dimensional array:

[[[1, 2],
[3, 4]],

[[5, 6],
[7, 8]]]

is represented linearly in row-major order as:

[1, 2, 3, 4, 5, 6, 7, 8]

Since 2 immediately follows 1, you can see that the right-most (or inner-most) axis is the one that varies the fastest.

The discrepancy in axis-ordering may take some getting used to, but it is a necessary evil. Since most other Python
and C software assumes row-major ordering, trying to enforce column-major ordering in arrays returned by PyFITS
is likely to cause more difficulties than it’s worth.

How do I open a very large image that won’t fit in memory?

Prior to PyFITS 3.1, when the data portion of an HDU is accessed, the data is read into memory in its entirety. For
example:

>>> hdul = pyfits.open('myimage.fits')
>>> hdul[0].data
...

reads the entire image array from disk into memory. For very large images or tables this is clearly undesirable, if not
impossible given the available resources.

However, pyfits.open() has an option to access the data portion of an HDU by memory mapping using mmap.
What this means is that accessing the data as in the example above only reads portions of the data into memory on
demand. For example, if I request just a slice of the image, such as hdul[0].data[100:200], then just rows

1.8. Other Information 59

http://en.wikipedia.org/wiki/Mmap

PyFITS Documentation, Release 3.4

100-200 will be read into memory. This happens transparently, as though the entire image were already in memory.
This works the same way for tables. For most cases this is your best bet for working with large files.

To use memory mapping, just add the memmap=True argument to pyfits.open().

In PyFITS 3.1, the mmap support is improved enough that memmap=True is the default for all pyfits.open()
calls. The default can also be controlled through an environment variable called PYFITS_USE_MEMMAP. Setting this
to 0 will disable mmap by default.

Unfortunately, memory mapping does not currently work as well with scaled image data, where BSCALE and BZERO
factors need to be applied to the data to yield physical values. Currently this requires enough memory to hold the entire
array, though this is an area that will see improvement in the future.

An alternative, which currently only works for image data (that is, non-tables) is the sections interface. It is largely
replaced by the better support for memmap, but may still be useful on systems with more limited virtual-memory
space, such as on 32-bit systems. Support for scaled image data is flakey with sections too, though that will be fixed.
See the PyFITS documentation for more details on working with sections.

How can I create a very large FITS file from scratch?

This is a very common issue, but unfortunately PyFITS does not come with any built-in facilities for creating large
files (larger than will fit in memory) from scratch (though it may in the future).

Normally to create a single image FITS file one would do something like:

>> data = numpy.zeros((40000, 40000), dtype=numpy.float64)
>> hdu = pyfits.PrimaryHDU(data=data)
>> hdu.writeto('large.fits')

However, a 40000 x 40000 array of doubles is nearly twelve gigabytes! Most systems won’t be able to create that in
memory just to write out to disk. In order to create such a large file efficiently requires a little extra work, and a few
assumptions.

First, it is helpful to anticpate about how large (as in, how many keywords) the header will have in it. FITS headers
must be written in 2880 byte blocks–large enough for 36 keywords per block (including the END keyword in the final
block). Typical headers have somewhere between 1 and 4 blocks, though sometimes more.

Since the first thing we write to a FITS file is the header, we want to write enough header blocks so that there is plenty
of padding in which to add new keywords without having to resize the whole file. Say you want the header to use 4
blocks by default. Then, excluding the END card which PyFITS will add automatically, create the header and pad it
out to 36 * 4 cards like so:

>>> data = numpy.zeros((100, 100), dtype=numpy.float64)
This is a stub array that we'll be using the initialize the HDU; its
exact size is irrelevant, as long as it has the desired number of
dimensions
>>> hdu = pyfits.PrimaryHDU(data=data)
>>> header = hdu.header
>>> while len(header) < (36 * 4 - 1):
... header.append() # Adds a blank card to the end

Now adjust the NAXISn keywords to the desired size of the array, and write only the header out to a file. Using the
hdu.writeto() method will cause PyFITS to “helpfully” reset the NAXISn keywords to match the size of the
dummy array:

>>> header['NAXIS1'] = 40000
>>> header['NAXIS2'] = 40000
>>> header.tofile('large.fits')

60 Chapter 1. Introduction

http://packages.python.org/pyfits/users_guide/users_image.html#data-section

PyFITS Documentation, Release 3.4

Finally, we need to grow out the end of the file to match the length of the data (plus the length of the header). This can
be done very efficiently on most systems by seeking past the end of the file and writing a single byte, like so:

>>> with open('large.fits', 'rb+') as fobj:
... fobj.seek(len(header.tostring()) + (40000 * 40000 * 8) - 1)
... # The -1 is to account for the final byte that we are about to
... # write
... fobj.write('\0')

On modern operating systems this will cause the file (past the header) to be filled with zeros out to the ~12GB needed
to hold a 40000 x 40000 image. On filesystems that support sparse file creation (most Linux filesystems, but not
HFS+) this is a very fast, efficient operation. On other systems your mileage may vary.

This isn’t the only way to build up a large file, but probably one of the safest. This method can also be used to create
large multi-extension FITS files, with a little care.

For creating very large tables, this method may also be used. Though it can be difficult to determine ahead of time
how many rows a table will need. In general, use of PyFITS is discouraged for the creation and manipulation of large
tables. The FITS format itself is not designed for efficient on-disk or in-memory manipulation of table structures. For
large, heavy-duty table data it might be better too look into using HDF5 through the PyTables library.

PyTables makes use of Numpy under the hood, and can be used to write binary table data to disk in the same format
required by FITS. It is then possible to serialize your table to the FITS format for distribution. At some point this FAQ
might provide an example of how to do this.

How do I create a multi-extension FITS file from scratch?

When you open a FITS file with pyfits.open(), a pyfits.HDUList object is returned, which holds all the
HDUs in the file. This HDUList class is a subclass of Python’s builtin list, and can be created from scratch and
used as such:

>>> new_hdul = pyfits.HDUList()
>>> new_hdul.append(pyfits.ImageHDU())
>>> new_hdul.append(pyfits.ImageHDU())
>>> new_hdul.writeto('test.fits')

That will create a new multi-extension FITS file with two empty IMAGE extensions (a default PRIMARY HDU is
prepended automatically if one was not provided manually).

Why is an image containing integer data being converted unexpectedly to floats?

If the header for your image contains non-trivial values for the optional BSCALE and/or BZERO keywords (that is,
BSCALE != 1 and/or BZERO != 0), then the raw data in the file must be rescaled to its physical values according to
the formula:

physical_value = BZERO + BSCALE * array_value

As BZERO and BSCALE are floating point values, the resulting value must be a float as well. If the original values
were 16-bit integers, the resulting values are single-precision (32-bit) floats. If the original values were 32-bit integers
the resulting values are double-precision (64-bit floats).

This automatic scaling can easily catch you of guard if you’re not expecting it, because it doesn’t happen until the data
portion of the HDU is accessed (to allow things like updating the header without rescaling the data). For example:

1.8. Other Information 61

http://www.hdfgroup.org/HDF5/
http://www.pytables.org/moin

PyFITS Documentation, Release 3.4

>>> hdul = pyfits.open('scaled.fits')
>>> image = hdul['SCI', 1]
>>> image.header['BITPIX']
32
>>> image.header['BSCALE']
2.0
>>> data = image.data # Read the data into memory
>>> data.dtype
dtype('float64') # Got float64 despite BITPIX = 32 (32-bit int)
>>> image.header['BITPIX'] # The BITPIX will automatically update too
-64
>>> 'BSCALE' in image.header # And the BSCALE keyword removed
False

The reason for this is that once a user accesses the data they may also manipulate it and perform calculations on it. If
the data were forced to remain as integers, a great deal of precision is lost. So it is best to err on the side of not losing
data, at the cost of causing some confusion at first.

If the data must be returned to integers before saving, use the scale() method:

>>> image.scale('int32')
>>> image.header['BITPIX']
32

Alternatively, if a file is opened with mode='update' along with the scale_back=True argument, the original
BSCALE and BZERO scaling will be automatically re-applied to the data before saving. Usually this is not desirable,
especially when converting from floating point back to unsigned integer values. But this may be useful in cases where
the raw data needs to be modified corresponding to changes in the physical values.

To prevent rescaling from occurring at all (good for updating headers–even if you don’t intend for the code to access the
data, it’s good to err on the side of caution here), use the do_not_scale_image_data argument when opening
the file:

>>> hdul = pyfits.open('scaled.fits', do_not_scale_image_data=True)
>>> image = hdul['SCI', 1]
>>> image.data.dtype
dtype('int32')

Why am I losing precision when I assign floating point values in the header?

The FITS standard allows two formats for storing floating-point numbers in a header value. The “fixed” format requires
the ASCII representation of the number to be in bytes 11 through 30 of the header card, and to be right-justified. This
leaves a standard number of characters for any comment string.

The fixed format is not wide enough to represent the full range of values that can be stored in a 64-bit float with full
precision. So FITS also supports a “free” format in which the ASCII representation can be stored anywhere, using the
full 70 bytes of the card (after the keyword).

Currently PyFITS only supports writing fixed format (it can read both formats), so all floating point values assigned
to a header are stored in the fixed format. There are plans to add support for more flexible formatting.

In the meantime it is possible to add or update cards by manually formatting the card image:

>>> c = pyfits.Card.fromstring('FOO = 1234567890.123456789')
>>> h = pyfits.Header()
>>> h.append(c)

62 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

>>> h
FOO = 1234567890.123456789

As long as you don’t assign new values to ‘FOO’ via h['FOO'] = 123, PyFITS will maintain the header value
exactly as you formatted it.

I’m opening many FITS files in a loop and getting OSError: Too many open files

Say you have some code like:

>>> import pyfits
>>> for filename in filenames:
... hdul = pyfits.open(filename)
... for hdu in hdul:
... hdu_data = hdul.data
... # Do some stuff with the data
... hdul.close()
...

The details may differ, but the qualitative point is that the data to many HDUs and/or FITS files are being accessed in
a loop. This may result in an exception like:

Traceback (most recent call last):
File "<stdin>", line 2, in <module>

OSError: [Errno 24] Too many open files: 'my_data.fits'

As explained in the note on working with large files, because PyFITS uses mmap by default to read the data in a
FITS file, even if you correctly close a file with HDUList.close a handle is kept open to that file so that the
memory-mapped data array can still be continued to be read transparently.

The way Numpy supports mmap is such that the file mapping is not closed until the overlying ndarray object has
no references to it and is freed memory. However, when looping over a large number of files (or even just HDUs)
rapidly, this may not happen immediately. Or in some cases if the HDU object persists, the data array attached to it
may persist too. The easiest workaround is to manually delete the .data attribute on the HDU object so that the
ndarray reference is freed and the mmap can be closed:

>>> for filename in filenames:
... hdul = pyfits.open(filename)
... for hdu in hdul:
... hdu_data = hdul.data
... # Do some stuff with the data
... # ...
... # Don't need the data anymore; delete all references to it
... # so that it can be garbage collected
... del hdu_data
... del hdu.data
... hdul.close()
...

In some extreme cases files are opened and closed fast enough that Python’s garbage collector does not free them
(and hence free the file handles) often enough. To mitigate this your code can manually force a garbage collection by
calling gc.collect() at the end of the loop.

In a future release it will be easier to automatically perform this sort of cleanup when closing FITS files, where needed.

1.8. Other Information 63

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/2/library/gc.html#gc.collect

PyFITS Documentation, Release 3.4

Changelog

3.5 (unreleased)

• Nothing changed yet.

3.4 (2016-01-28)

This release removes support for Python 2.5, as well as Python 3.0 - 3.2. Supported Python versions are now Python
2.6, 2.7, and 3.3+. This release incorporates new features and bug fixes made in the astropy.io.fits module in
Astropy, which is originally based on PyFITS and supersedes the stand-alone PyFITS module.

This will likely be the last stand-alone release of PyFITS that does not depend on Astropy. There are a few reasons for
this:

1. Development resources for PyFITS are limited, and better focused on newer projects.

2. Astropy incorporates all features of PyFITS, and has many new features from which future development of the
FITS reader/writer can benefit, such as a better table interface, units, and datetime types. Since the most bene-
ficial future development in astropy.io.fits depends on other parts of Astropy there is less motivation to
maintain an independent FITS module.

This release contains most changes to the astropy.io.fits module that have been made since the last release
of PyFITS (v3.3), except for changes that depend explicitly on other parts of Astropy. This brings PyFITS mostly to
parity with the version of astropy.io.fits that will be in Astropy v1.1.2.

Although an exhaustive list of changes is difficult, some of the highlights are below:

New Features

• Included a new command-line script called fitsheader to display the header(s) of a FITS file from the command
line. (astropy/astropy#2092)

• Added support for a savecomment argument in the Header.set method, equivalent to the argument of the
same name to the old Header.update method. (Note: This change was never ported to Astropy due to lack
of demand.)

• The fitsdiff script ignores some things by default when comparing fits files (e.g. empty header lines). This
adds a --exact option where nothing is ignored. [#2782, #3110]

• Section now supports all advanced indexing features ndarray does (slices with any steps, integer arrays,
boolean arrays, None, Ellipsis). It also properly returns scalars when this is appropriate. (astropy/astropy#3148)

• Support reading and writing from bzip2 compressed files. i.e. .fits.bz2 files. (astropy/astropy#3789)

API Changes

• Overwriting an existing file using the clobber=True option no longer displays a warning message. (as-
tropy/astropy#1963)

• pyfits.open no longer catches OSError exceptions on missing or unreadable files– instead it raises the
standard Python exceptions in such cases. (astropy/astropy#2756)

• The uint argument to pyfits.open is now True by default; that is, arrays using the FITS unsigned integer
convention will be detected, and read as unsigned integers by default. A new config option for pyfits,
ENABLE_UINT, can be changed to False to revert to the original behavior of ignoring the uint convention
unless it is explicitly requested with uint=True. (astropy/astropy#3916)

64 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

• The ImageHDU.NumCode and ImageHDU.ImgCode attributes (and same for other classes derived from
_ImageBaseHDU) are deprecated. Instead, the pyfits module-level constants BITPIX2DTYPE and
DTYPE2BITPIX can be used. (astropy/astropy#3916)

Bug Fixes

• Fixes for checksums on 32-bit platforms. Results may be different if writing or checking checksums in “non-
standard” mode. (astropy/astropy#2484)

• Fixed a crash when reading scaled float data out of a FITS file that was loaded from a string (using HDUList.
fromfile) rather than from a file. (astropy/astropy#2710)

• Fixed a crash when reading data from an HDU whose header contained in invalid value for the BLANK keyword
(e.g., a string value instead of an integer as required by the FITS Standard). Invalid BLANK keywords are now
warned about, but are otherwise ignored. (astropy/astropy#2711)

• Fixed a crash when reading the header of a tile-compressed HDU if that header contained invalid duplicate
keywords resulting in a KeyError (astropy/astropy#2750)

• Fixed corruption when writing new FITS files through to gzipped files. (astropy/astropy#2794)

• Fixed crash when writing HDUs made with non-contiguous data arrays to file-like objects. (as-
tropy/astropy#2794)

• It is now possible to create pyfits.BinTableHDU objects with a table with zero rows. (as-
tropy/astropy#2916)

• The in operator now works correctly for checking if an extension is in an HDUList (as given via EXTNAME,
(EXTNAME, EXTVER) tuples, etc.) (astropy/astropy#3060)

• Added workaround for bug in MacOS X <= 10.8 that caused np.fromfile to fail. (astropy/astropy#3078)

• Added support for the RICE_ONE compression type synonym. (astropy/astropy#3115)

• Fixed the problem in pyfits.open of some filenames with colon (:) in the name being recognized as URLs
instead of file names. (astropy/astropy#3122)

• Setting memmap=True in fits.open and related functions now raises a ValueError if opening a file in
memory-mapped mode is impossible. (astropy/astropy#2298)

• CONTINUE cards no longer end the value of the final card in the series with an ampersand, per the specification
of the CONTINUE card convention. (astropy/astropy#3282)

• Fixed a crash that occurred when reading an ASCII table containing zero-precision floating point fields. (as-
tropy/astropy#3422)

• When a float field for an ASCII table has zero-precision a decimal point (with no digits following it) is still
written to the field as long as there is space for it, as recommended by the FITS standard. This makes it less
ambiguous that these columns should be interpreted as floats. (astropy/astropy#3422)

• Fixed a severe memory leak that occurred when reading tile compressed images. (astropy/astropy#3680)

• Fixed bug where column data could be unintentionally byte-swapped when copying data from an existing FITS
file to a new FITS table with a TDIMn keyword for that column. (astropy/astropy#3561)

• The ColDefs.change_attrib, ColDefs.change_name, and ColDefs.change_unit methods
now work as advertised. It is also possible (and preferable) to update attributes directly on Column objects
(for example setting column.name), and the change will be accurately reflected in any associated table data
and its FITS header. (astropy/astropy#3283)

• Fixes an issue with the FITS_rec interface to FITS table data, where a FITS_rec created by copying an
existing FITS table but adding new rows could not be sliced or masked correctly. (astropy/astropy#3641)

1.8. Other Information 65

PyFITS Documentation, Release 3.4

• Fixed handling of BINTABLE with TDIMn of size 1. (astropy/astropy#3580)

• Fixes to support Numpy 1.10. (astropy/astropy#3419)

• Fixed crash when updating data in a random groups HDU opened in update mode. (astropy/astropy#3730)

• Fixed incorrect checksum / datasum being written when re-writing a scaled HDU (i.e. non-trivial BSCALE
and/or BZERO) with do_not_scale_image_data=False. (astropy/astropy#3883)

• Fixed stray deprecation warning in BinTableHDU.copy(). (astropy/astropy#3789)

• Better handling of the BLANK keyword when auto-scaling scaled image data. The BLANK keyword is now
removed from the header after auto-scaling is applied, and it is restored properly (with floating point NaNs
replaced by the filler value) when updating a file opened with the scale_back=True argument. Invalid
usage of the BLANK keyword is also better warned about during validation. (astropy/astropy#3865)

• Reading memmaped scaled images won’t fail when do_not_scale_image_data=True (that is, since
we’re just reading the raw / physical data there is no reason mmap can’t be used). (astropy/astropy#3766)

• Fixed a reference cycle that could sometimes cause FITS table-related objects (BinTableHDU, ColDefs,
etc.) to hang around in memory longer than expected. (astropy/astropy#4012)

• Fix bug when extending one header (without comments) with another (with comments). (astropy/astropy#3967)

• Somewhat improved resource usage for FITS data–previously a new mmap was opened for each HDU of a FITS
file accessed through an HDUList. Each mmap used up a single file descriptor, causing problems with system
resource limits for some users. Now only a single mmap is opened, and shared for the data of all HDUs. Note:
The problem still persists with using the “convenience” functions. For example using fits.getdata will
create one mmap per HDU read this way (as opposed to opening the file with fits.open and accessing the
HDUs through the HDUList object). (astropy/astropy#4097)

• Fix bug where reading a file without a newline failed with an unrelated / unhelpful exception. (as-
tropy/astropy#4160)

• fitsdiff and related functions now do a better job reporting differences between values that are different
types but have the same representation (ex: the string ‘0’ versus the number 0). (astropy/astropy#4122)

• Miscellaneous fixes for supporting Numpy 1.10. (astropy/astropy#4228)

• Fixed an issue where writing a column of unicode strings to a FITS table resulted in a quadrupling of size
of the column (i.e. the format of the FITS column was 4 characters for every one in the original strings).
(astropy/astropy#4228)

• Added support for an obscure case (but nonetheless allowed by the FITS standard) where a column has some
TDIMn keyword, but a repeat count in the TFORMn column greater than the number of elements implied by
the TDIMn. For example TFORMn = 100I, but TDIMn = ‘(5,5)’. In this case the TDIMn implies 5x5 arrays
in the column, but the TFORMn implies a 100 element 1-D array in the column. In this case the TDIM takes
precedence, and the remaining bytes in the column are ignored. (astropy/astropy#4228)

• Fixed a regression that could cause writes of large FITS files to be truncated. (astropy/astropy#4307)

• Fixed possible segfault during error handling in FITS tile compression. (astropy/astropy#4489)

• Fixed crash on pickling of binary table columns with the ‘X’, ‘P’, or ‘Q’ format. (astropy/astropy#4514)

• Fixed memory / reference leak that could occur when copying a FITS_rec object (the .data for table HDUs).
(astropy/astropy#520)

• Fixed a memory / reference leak in FITS_rec that occurred in a wide range of cases, especially after writing
FITS tables to a file, but in other cases as well. (astropy/astropy#4539)

66 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

3.3 (2014-07-17)

New Features

• Added new verification options fix+ignore, fix+warn, fix+exception, silentfix+ignore,
silentfix+warn, and silentfix+exception which give more control over how to report fixable er-
rors as opposed to unfixable errors. See the “Verification” section in the PyFITS documentation for more details.

API Changes

• The pyfits.new_table function is now fully deprecated (though will not be removed for a long time,
considering how widely it is used).

Instead please use the more explicit pyfits.BinTableHDU.from_columns to create a new binary table
HDU, and the similar pyfits.TableHDU.from_columns to create a new ASCII table. These otherwise
accept the same arguments as pyfits.new_table which is now just a wrapper for these.

• The .fromstring classmethod of each HDU type has been simplified such that, true to its namesake, it only
initializes an HDU from a string containing its header and data. (spacetelescope/PyFITS#64)

• Fixed an issue where header wildcard matching (for example header['DATE*']) can be used to match any
characters that might appear in a keyword. Previously this only matched keywords containing characters in
the set [0-9A-Za-z_]. Now this can also match a hyphen - and any other characters, as some conventions
like HIERARCH and record-valued keyword cards allow a wider range of valid characters than standard FITS
keywords.

• This will be the last release to support the following APIs that have been marked deprecated since PyFITS v3.1:

– The CardList class, which was part of the old header implementation.

– The Card.key attribute. Use Card.keyword instead.

– The Card.cardimage and Card.ascardimage attributes. Use simply Card.image or
str(card) instead.

– The create_card factory function. Simply use the normal Card constructor instead.

– The create_card_from_string factory function. Use Card.fromstring instead.

– The upper_key function. Use Card.normalize_keyword method instead (this is not unlikely to
be used outside of PyFITS itself, but it was technically public API).

– The usage of Header.update with Header.update(keyword, value, comment) argu-
ments. Header.update should only be used analogously to dict.update. Use Header.set
instead.

– The Header.ascard attribute. Use Header.cards instead for a list of all the Card objects in the
header.

– The Header.rename_key method. Use Header.rename_keyword instead.

– The Header.get_history method. Use header['HISTORY'] instead (normal keyword lookup).

– The Header.get_comment method. Use header['COMMENT'] instead.

– The Header.toTxtFile method. Use header.totextfile instead.

– The Header.fromTxtFile method. Use Header.fromtextfile instead.

– The pyfits.tdump and tcreate functions. Use pyfits.tabledump and pyfits.tableload
respectively.

1.8. Other Information 67

PyFITS Documentation, Release 3.4

– The BinTableHDU.tdump and tcreate methods. Use BinTableHDU.dump and
BinTableHDU.load respectively.

– The txtfile argument to the Header constructor. Use Header.fromfile instead.

– The startColumn and endColumn arguments to the FITS_record constructor. These are unlikely
to be used by any user code.

These deprecated interfaces will be removed from the development version of PyFITS following the v3.3 release
(they will still be available in any v3.3.x bugfix releases, however).

Other Changes and Additions

• PyFITS has switched to a unified code base which supports Python 2.5 through 3.4 simultaneously without trans-
lation. This shouldn’t have any significant performance impacts, but please report if anything seems noticeably
slower. As a reminder, support for Python 2.5 will be ended after PyFITS 3.3.x.

• Warnings for deprecated APIs in PyFITS are now always displayed by default. This is in line with a similar
change made recently to Astropy: https://github.com/astropy/astropy/pull/1871 To disable PyFITS deprecation
warnings in scripts one may call pyfits.ignore_deprecation_warnings() after importing PyFITS.

• Card objects have a new is_blank attribute which returns True if the card represents a blank card (no
keyword, value, or comment) and False otherwise.

Bug Fixes

• Fixed a regression where it was not possible to save an empty “compressed” image to a file (in this case there is
nothing to compress, hence the quotes, but trying to do so caused a crash). (spacetelescope/PyFITS#69)

• Fixed a regression that may have been introduced in v3.2.1 with writing compressed image HDUs, particularly
compressed images using a non-empty GZIP_COMPRESSED_DATA column. (spacetelescope/#71)

3.2.5 (unreleased)

• Nothing changed yet.

3.1.7 (unreleased)

• Nothing changed yet.

3.2.4 (2014-06-02)

• Fixed a regression where multiple consecutive calls of the writeto method on the same HDU but to different
files could lead to corrupt data or crashes on the subsequent calls after the first. (spacetelescope/PyFITS#40)

3.2.3 (2014-05-14)

• Nominal support for Python 3.4.

• Fixed a bug with using the tabledump and tableload functions with tables containing array columns
(columns in which each element is an array instead of a single scalar value). (spacetelescope/PyFITS#22)

• Fixed an issue where PyFITS allowed newline characters in header values and comments. (spacetele-
scope/PyFITS#51)

• Fixed pickling of FITS_rec (table data) objects. (spacetelescope/PyFITS#53)

• Improved behavior when writing large compressed images on OSX by removing an unnecessary check for
platform architecture. (spacetelescope/PyFITS#57)

68 Chapter 1. Introduction

https://github.com/astropy/astropy/pull/1871

PyFITS Documentation, Release 3.4

• Allow reading FITS files from file-like objects that do not have a .closed attribute (and as such may not even
have an “open” vs. “closed” concept). (spacetelescope/PyFITS#56)

• Fixed duplicate insertion of commentary keywords on compressed image headers. (spacetelescope/PyFITS#58)

• Fixed minor issue with comparison of header commentary card values. (spacetelescope/PyFITS#59)

3.1.6 (2014-05-14)

• Nominal support for Python 3.4.

• Fixed a bug with using the tabledump and tableload functions with tables containing array columns
(columns in which each element is an array instead of a single scalar value). (Backported from 3.2.3)

• Fixed an issue where PyFITS allowed newline characters in header values and comments. (Backported from
3.2.3)

• Fixed pickling of FITS_rec (table data) objects. (Backported from 3.2.3)

• Improved behavior when writing large compressed images on OSX by removing an unnecessary check for
platform architecture. (Backported from 3.2.3)

• Allow reading FITS files from file-like objects that do not have a .closed attribute (and as such may not even
have an “open” vs. “closed” concept). (Backported from 3.2.3)

• Fixed minor issue with comparison of header commentary card values. (Backported from 3.2.3)

3.2.2 (2014-03-25)

• Fixed a regression on deletion of record-valued keyword cards using the Header wildcard syntax. This was
intended to be fixed before the v3.2.1 release.

3.1.5 (2014-03-25)

• Fixed a regression on deletion of record-valued keyword cards using the Header wildcard syntax. This was
intended to be fixed before the v3.1.4 release.

3.2.1 (2014-03-04)

• Nominal support for the upcoming Python 3.4.

• Added missing features from the Header.insert() method that were intended for inclusion in the orig-
inal 3.1 release: In addition to accepting an integer index as the first argument, it also supports supplying a
keyword name as the first argument for insertion relative to a specific keyword. It also now supports an op-
tional after argument. If after=True the insertion is made below the insertion point instead of above it.
(spacetelescope/PyFITS#12)

• Fixed support for broadcasting of values assigned to table columns. (spacetelescope/PyFITS#48)

• A grab bag of minor performance improvements in headers. (spacetelescope/PyFITS#46)

• Fix an unrelated error that occurred when instantiating a ColDefs object with invalid input.

• Fixed an issue where opening an image containing pseudo-unsigned integers and immediately writing it to a
new file using the writeto method would drop the scale factors that identified the data as unsigned.

• Fixed a bug where writing a file with checksum=True did not add the checksum on new files. (spacetele-
scope/PyFITS#8)

• Fixed an issue where validating an HDU’s checksums removed the checksum from that HDU’s header entirely
(even if it was valid.)

1.8. Other Information 69

PyFITS Documentation, Release 3.4

• Fixed checksums on compressed images, so that the ZHECKSUM and ZDATASUM contain a checksum of the
original image HDU, while CHECKSUM and DATASUM contain checksums of the compressed image HDU. This
feature was supposed to be supported in 3.2, but the support was buggy.

• Fixed an issue where the size of the heap was sometimes not computed properly when writing an existing table
containing variable-length array columns to a new FITS file. This could result in corruption in the new FITS
file. (spacetelescope/PyFITS#47)

• Fixed issue with updates to the header of CompImageHDU objects not being preserved on save. (spacetele-
scope/PyFITS#23)

• Fixed a bug where a boolean value of True in a header could not be replaced with the integer 1, and likewise
for False and 0 and vice versa.

• Fixed an issue similar to the above one but for numeric values–now replacing a header value with an equiv-
alent numeric value will up/downcast that value. For example replacing ‘0’ with ‘0.0’ will write ‘0.0’ to the
header so that it is returned as a floating point value. Likewise a float can be downcast to an integer. (spacetele-
scope/PyFITS#49)

• A handful of Python 3 compatibility fixes, especially for compatibility with the upcoming Python 3.4.

• Fixed unrelated crash when a header contains an invalid END card (for example “END = ”). This resulted in a
cryptic traceback. Now headers like this will detect “clearly intended” END cards and produce a warning about
their invalidity and fix them. (#217)

• Allowed a sequence of Column objects to be passed in as the main argument to FITS_rec.from_columns
as the documentation suggests should be possible.

• Fixed a display formatting issue with fitsdiff where sometimes it did not show the difference between two
floating point numbers if they were the same up to some low number of digits. (spacetelescope/PyFITS#21)

• Fixed an issue where Python 2 sometimes allowed non-ASCII strings to be assigned as header values if they
were assigned as old-style str objects and not unicode objects. (spacetelescope/PyFITS#37)

3.1.4 (2014-03-04)

• Added missing features from the Header.insert() method that were intended for inclusion in the original
3.1 release: In addition to accepting an integer index as the first argument, it also supports supplying a keyword
name as the first argument for insertion relative to a specific keyword. It also now supports an optional after
argument. If after=True the insertion is made below the insertion point instead of above it. (Backported
from 3.2.1)

• A grab bag of minor performance improvements in headers. (Backported from 3.2.1)

• Fixed an issue where opening an image containing pseudo-unsigned integers and immediately writing it to a new
file using the writeto method would drop the scale factors that identified the data as unsigned. (Backported
from 3.2.1)

• Fixed a bug where writing a file with checksum=True did not add the checksum on new files. (Backported
from 3.2.1)

• Fixed an issue where validating an HDU’s checksums removed the checksum from that HDU’s header entirely
(even if it was valid.) (Backported from 3.2.1)

• Fixed an issue where the size of the heap was sometimes not computed properly when writing an existing table
containing variable-length array columns to a new FITS file. This could result in corruption in the new FITS
file. (Backported from 3.2.1)

• Fixed a bug where a boolean value of True in a header could not be replaced with the integer 1, and likewise
for False and 0 and vice versa. (Backported from 3.2.1)

70 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

• Fixed an issue similar to the above one but for numeric values–now replacing a header value with an equivalent
numeric value will up/downcast that value. For example replacing ‘0’ with ‘0.0’ will write ‘0.0’ to the header
so that it is returned as a floating point value. Likewise a float can be downcast to an integer. (Backported from
3.2.1)

• Fixed unrelated crash when a header contains an invalid END card (for example “END = ”). This resulted in a
cryptic traceback. Now headers like this will detect “clearly intended” END cards and produce a warning about
their invalidity and fix them. (Backported from 3.2.1)

• Fixed a display formatting issue with fitsdiff where sometimes it did not show the difference between two
floating point numbers if they were the same up to some low number of digits. (Backported from 3.2.1)

• Fixed an issue where Python 2 sometimes allowed non-ASCII strings to be assigned as header values if they
were assigned as old-style str objects and not unicode objects. (Backported from 3.2.1)

3.0.13 (2014-03-04)

• Fixed a bug where writing a file with checksum=True did not add the checksum on new files. (Backported
from 3.2.1)

• Fixed an issue where validating an HDU’s checksums removed the checksum from that HDU’s header entirely
(even if it was valid.) (Backported from 3.2.1)

3.2 (2013-11-26)

Highlights

• Rewrote CFITSIO-based backend for handling tile compression of FITS files. It now uses a standard CFITSIO
instead of heavily modified pieces of CFITSIO as before. PyFITS ships with its own copy of CFITSIO v3.35
which supports the latest version of the Tiled Image Convention (v2.3), but system packagers may choose instead
to strip this out in favor of a system-installed version of CFITSIO. Earlier versions may work, but nothing earlier
than 3.28 has been tested yet. (#169)

• Added support for reading and writing tables using the Q format for columns. The Q format is identical to the
P format (variable-length arrays) except that it uses 64-bit integers for the data descriptors, allowing more than
4 GB of variable-length array data in a single table. (#160)

• Added initial support for table columns containing pseudo-unsigned integers. This is currently enabled by using
the uint=True option when opening files; any table columns with the correct BZERO value will be interpreted
and returned as arrays of unsigned integers.

• Some refactoring of the table and FITS_rec modules in order to better separate the details of the FITS binary
and ASCII table data structures from the HDU data structures that encapsulate them. Most of these changes
should not be apparent to users (but see API Changes below).

API Changes

• Assigning to values in ColDefs.names, ColDefs.formats, ColDefs.nulls and other attributes of
ColDefs instances that return lists of column properties is no longer supported. Assigning to those lists
will no longer update the corresponding columns. Instead, please just modify the Column instances directly
(Column.name, Column.null, etc.)

• The pyfits.new_table function is marked “pending deprecation”. This does not mean it will be removed
outright or that its functionality has changed. It will likely be replaced in the future for a function with sim-
ilar, if not subtly different functionality. A better, if not slightly more verbose approach is to use pyfits.
FITS_rec.from_columns to create a new FITS_rec table–this has the same interface as pyfits.
new_table. The difference is that it returns a plan FITS_rec array, and not an HDU instance. This
FITS_rec object can then be used as the data argument in the constructors for BinTableHDU (for binary

1.8. Other Information 71

PyFITS Documentation, Release 3.4

tables) or TableHDU (for ASCII tables). This is analogous to creating an ImageHDU by passing in an image
array. pyfits.FITS_rec.from_columns is just a simpler way of creating a FITS-compatible recarray
from a FITS column specification.

• The updateHeader, updateHeaderData, and updateCompressedData methods of the
CompDataHDU class are pending deprecation and moved to internal methods. The operation of these
methods depended too much on internal state to be used safely by users; instead they are invoked automatically
in the appropriate places when reading/writing compressed image HDUs.

• The CompDataHDU.compData attribute is pending deprecation in favor of the clearer and more PEP-8 com-
patible CompDataHDU.compressed_data.

• The constructor for CompDataHDU has been changed to accept new keyword arguments. The new keyword
arguments are essentially the same, but are in underscore_separated format rather than camelCase format. The
old arguments are still pending deprecation.

• The internal attributes of HDU classes _hdrLoc, _datLoc, and _datSpan have been replaced with
_header_offset, _data_offset, and _data_size respectively. The old attribute names are still
pending deprecation. This should only be of interest to advanced users who have created their own HDU
subclasses.

• The following previously deprecated functions and methods have been removed entirely: createCard,
createCardFromString, upperKey, ColDefs.data, setExtensionNameCaseSensitive,
_File.getfile, _TableBaseHDU.get_coldefs, Header.has_key, Header.ascardlist.

If you run your code with a previous version of PyFITS (>= 3.0, < 3.2) with the python -Wd argument,
warnings for all deprecated interfaces still in use will be displayed.

• Interfaces that were pending deprecation are now fully deprecated. These include: create_card,
create_card_from_string, upper_key, Header.get_history, and Header.get_comment.

• The .name attribute on HDUs is now directly tied to the HDU’s header, so that if .header['EXTNAME']
changes so does .name and vice-versa.

• The pyfits.file.PYTHON_MODES constant dict was renamed to pyfits.file.PYFITS_MODES
which better reflects its purpose. This is rarely used by client code, however. Support for the old name will
be removed by PyFITS 3.4.

Other Changes and Additions

• The new compression code also adds support for the ZQUANTIZ and ZDITHER0 keywords added in more
recent versions of this FITS Tile Compression spec. This includes support for lossless compression with GZIP.
(#198) By default no dithering is used, but the SUBTRACTIVE_DITHER_1 and SUBTRACTIVE_DITHER_2
methods can be enabled by passing the correct constants to the quantize_method argument to the
CompImageHDU constructor. A seed can be manually specified, or automatically generated using either
the system clock or checksum-based methods via the dither_seed argument. See the documentation for
CompImageHDU for more details. (#198) (spacetelescope/PYFITS#32)

• Images compressed with the Tile Compression standard can now be larger than 4 GB through support of the Q
format. (#159)

• All HDUs now have a .ver .level attribute that returns the value of the EXTVAL and EXTLEVEL keywords
from that HDU’s header, if the exist. This was added for consistency with the .name attribute which returns
the EXTNAME value from the header.

• Then Column and ColDefs classes have new .dtype attributes which give the Numpy dtype for the column
data in the first case, and the full Numpy compound dtype for each table row in the latter case.

72 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

• There was an issue where new tables created defaulted the values in all string columns to ‘0.0’. Now string
columns are filled with empty strings by default–this seems a less surprising default, but it may cause differences
with tables created with older versions of PyFITS.

• Improved round-tripping and preservation of manually assigned column attributes (TNULLn, TSCALn, etc.) in
table HDU headers. (astropy/astropy#996)

Bug Fixes

• Binary tables containing compressed images may, optionally, contain other columns unrelated to the tile com-
pression convention. Although this is an uncommon use case, it is permitted by the standard. (#159)

• Reworked some of the file I/O routines to allow simpler, more consistent mapping between OS-level file modes
(‘rb’, ‘wb’, ‘ab’, etc.) and the more “PyFITS-specific” modes used by PyFITS like “readonly” and “update”.
That is, if reading a FITS file from an open file object, it doesn’t matter as much what “mode” it was opened in
so long as it has the right capabilities (read/write/etc.) Also works around bugs in the Python io module in 2.6+
with regard to file modes. (spacetelescope/PyFITS#33)

• Fixed an obscure issue that can occur on systems that don’t have flush to memory-mapped files implemented
(namely GNU Hurd). (astropy/astropy#968)

3.1.3 (2013-11-26)

• Disallowed assigning NaN and Inf floating point values as header values, since the FITS standard does not define
a way to represent them in. Because this is undefined, the previous behavior did not make sense and produced
invalid FITS files. (spacetelescope/PyFITS#11)

• Added a workaround for a bug in 64-bit OSX that could cause truncation when writing files greater than 2^32
bytes in size. (spacetelescope/PyFITS#28)

• Fixed a long-standing issue where writing binary tables did not correctly write the TFORMn keywords for
variable-length array columns (they ommitted the max array length parameter of the format). This was thought
fixed in v3.1.2, but it was only fixed there for compressed image HDUs and not for binary tables in general.

• Fixed an obscure issue that can occur on systems that don’t have flush to memory-mapped files implemented
(namely GNU Hurd). (Backported from 3.2)

3.0.12 (2013-11-26)

• Disallowed assigning NaN and Inf floating point values as header values, since the FITS standard does not define
a way to represent them in. Because this is undefined, the previous behavior did not make sense and produced
invalid FITS files. (Backported from 3.1.3)

• Added a workaround for a bug in 64-bit OSX that could cause truncation when writing files greater than 2^32
bytes in size. (Backported from 3.1.3)

• Fixed a long-standing issue where writing binary tables did not correctly write the TFORMn keywords for
variable-length array columns (they ommitted the max array length parameter of the format). This was thought
fixed in v3.1.2, but it was only fixed there for compressed image HDUs and not for binary tables in general.
(Backported from 3.1.3)

• Fixed an obscure issue that can occur on systems that don’t have flush to memory-mapped files implemented
(namely GNU Hurd). (Backported from 3.2)

3.1.2 (2013-04-22)

• When an error occurs opening a file in fitsdiff the exception message will now at least mention which file had
the error. (#168)

1.8. Other Information 73

PyFITS Documentation, Release 3.4

• Fixed support for opening gzipped FITS files by filename in a writeable mode (PyFITS has supported writing to
gzip files for some time now, but only enabled it when GzipFile objects were passed to pyfits.open() due
to some legacy code preventing full gzip support. (#195)

• Added a more helpful error message in the case of malformatted FITS files that contain non-float NULL values
in an ASCII table but are missing the required TNULLn keywords in the header. (#197)

• Fixed an (apparently long-standing) issue where writing compressed images did not correctly write the TFORMn
keywords for variable-length array columns (they ommitted the max array length parameter of the format).
(#199)

• Slightly refactored how tables containing variable-length array columns are handled to add two improvements:
Fixes an issue where accessing the data after a call to the pyfits.getdata convenience function caused an
exception, and allows the VLA data to be read from an existing mmap of the FITS file. (#200)

• Fixed a bug that could occur when opening a table containing multi-dimensional columns (i.e. via the TDIMn
keyword) and then writing it out to a new file. (#201)

• Added use of the console_scripts entry point to install the fitsdiff and fitscheck scripts, which if nothing else
provides better Windows support. The generated scripts now override the ones explicitly defined in the scripts/
directory (which were just trivial stubs to begin with). (#202)

• Fixed a bug on Python 3 where attempting to open a non-existent file on Python 3 caused a seemingly unrelated
traceback. (#203)

• Fixed a bug in fitsdiff that reported two header keywords containing NaN as value as different. (#204)

• Fixed an issue in the tests that caused some tests to fail if pyfits is installed with read-only permissions. (#208)

• Fixed a bug where instantiating a BinTableHDU from a numpy array containing boolean fields converted all
the values to False. (#215)

• Fixed an issue where passing an array of integers into the constructor of Column() when the column type is
floats of the same byte width caused the column array to become garbled. (#218)

• Fixed inconsistent behavior in creating CONTINUE cards from byte strings versus unicode strings in Python 2–
CONTINUE cards can now be created properly from unicode strings (so long as they are convertable to ASCII).
(spacetelescope/PyFITS#1)

• Fixed a couple cases where creating a new table using TDIMn in some of the columns could caused a crash.
(spacetelescope/PyFITS#3)

• Fixed a bug in parsing HIERARCH keywords that do not have a space after the first equals sign (before the
value). (spacetelescope/PyFITS#5)

• Prevented extra leading whitespace on HIERARCH keywords from being treated as part of the keyword.
(spacetelescope/PyFITS#6)

• Fixed a bug where HIERARCH keywords containing lower-case letters was mistakenly marked as invalid during
header validation. (spacetelescope/PyFITS#7)

• Fixed an issue that was ancillary to (spacetelescope/PyFITS#7) where the Header.index() method did not
work correctly with HIERARCH keywords containing lower-case letters.

3.0.11 (2013-04-17)

• Fixed support for opening gzipped FITS files by filename in a writeable mode (PyFITS has supported writing to
gzip files for some time now, but only enabled it when GzipFile objects were passed to pyfits.open() due
to some legacy code preventing full gzip support. Backported from 3.1.2. (#195)

• Added a more helpful error message in the case of malformatted FITS files that contain non-float NULL values
in an ASCII table but are missing the required TNULLn keywords in the header. Backported from 3.1.2. (#197)

74 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

• Fixed an (apparently long-standing) issue where writing compressed images did not correctly write the TFORMn
keywords for variable-length array columns (they ommitted the max array length parameter of the format).
Backported from 3.1.2. (#199)

• Slightly refactored how tables containing variable-length array columns are handled to add two improvements:
Fixes an issue where accessing the data after a call to the pyfits.getdata convenience function caused an
exception, and allows the VLA data to be read from an existing mmap of the FITS file. Backported from 3.1.2.
(#200)

• Fixed a bug that could occur when opening a table containing multi-dimensional columns (i.e. via the TDIMn
keyword) and then writing it out to a new file. Backported from 3.1.2. (#201)

• Fixed a bug on Python 3 where attempting to open a non-existent file on Python 3 caused a seemingly unrelated
traceback. Backported from 3.1.2. (#203)

• Fixed a bug in fitsdiff that reported two header keywords containing NaN as value as different. Backported from
3.1.2. (#204)

• Fixed an issue in the tests that caused some tests to fail if pyfits is installed with read-only permissions. Back-
ported from 3.1.2. (#208)

• Fixed a bug where instantiating a BinTableHDU from a numpy array containing boolean fields converted all
the values to False. Backported from 3.1.2. (#215)

• Fixed an issue where passing an array of integers into the constructor of Column() when the column type is
floats of the same byte width caused the column array to become garbled. Backported from 3.1.2. (#218)

• Fixed a couple cases where creating a new table using TDIMn in some of the columns could caused a crash.
Backported from 3.1.2. (spacetelescope/PyFITS#3)

3.1.1 (2013-01-02)

This is a bug fix release for the 3.1.x series.

Bug Fixes

• Improved handling of scaled images and pseudo-unsigned integer images in compressed image HDUs. They
now work more transparently like normal image HDUs with support for the do_not_scale_image_data
and uint options, as well as scale_back and save_backup. The .scale() method works better too.
(#88)

• Permits non-string values for the EXTNAME keyword when reading in a file, rather than throwing an exception
due to the malformatting. Added verification for the format of the EXTNAME keyword when writing. (#96)

• Added support for EXTNAME and EXTVER in PRIMARY HDUs. That is, if EXTNAME is specified in the
header, it will also be reflected in the .name attribute and in pyfits.info(). These keywords used to be
verboten in PRIMARY HDUs, but the latest version of the FITS standard allows them. (#151)

• HCOMPRESS can again be used to compress data cubes (and higher-dimensional arrays) so long as the tile
size is effectively 2-dimensional. In fact, PyFITS will automatically use compatible tile sizes even if they’re not
explicitly specified. (#171)

• Added support for the optional endcard parameter in the Header.fromtextfile() and Header.
totextfile() methods. Although endcard=False was a reasonable default assumption, there are still
text dumps of FITS headers that include the END card, so this should have been more flexible. (#176)

• Fixed a crash when running fitsdiff on two empty (that is, zero row) tables. (#178)

• Fixed an issue where opening files containing random groups HDUs in update mode could cause an unnecessary
rewrite of the file even if none of the data is modified. (#179)

1.8. Other Information 75

PyFITS Documentation, Release 3.4

• Fixed a bug that could caused a deadlock in the filesystem on OSX if PyFITS is used with Numpy 1.7 in some
cases. (#180)

• Fixed a crash when generating diff reports from diffs using the ignore_comments options. (#181)

• Fixed some bugs with FITS WCS distortion paper record-valued keyword cards:

– Cards that looked kind of like RVKCs but were not intended to be were over-permissively treated as such–
commentary keywords like COMMENT and HISTORY were particularly affected. (#183)

– Looking up a card in a header by its standard FITS keyword only should always return the raw value of
that card. That way cards containing values that happen to valid RVKCs but were not intended to be will
still be treated like normal cards. (#184)

– Looking up a RVKC in a header with only part of the field-specifier (for example “DP1.AXIS” instead of
“DP1.AXIS.1”) was implicitly treated as a wildcard lookup. (#184)

• Fixed a crash when diffing two FITS files where at least one contains a compressed image HDU which was not
recognized as an image instead of a table. (#187)

• Fixed bugs in the backwards compatibility layer for the CardList.index and CardList.countmethods.
(#190)

• Improved __repr__ and text file representation of cards with long values that are split into CONTINUE cards.
(#193)

• Fixed a crash when trying to assign a long (> 72 character) value to blank (‘’) keywords. This also changed
how blank keywords are represented–there are still exactly 8 spaces before any commentary content can begin;
this may affect the exact display of header cards that assumed there could be fewer spaces in a blank keyword
card before the content begins. However, the current approach is more in line with the requirements of the FITS
standard. (#194)

3.0.10 (2013-01-02)

• Improved handling of scaled images and pseudo-unsigned integer images in compressed image HDUs. They
now work more transparently like normal image HDUs with support for the do_not_scale_image_data
and uint options, as well as scale_back and save_backup. The .scale() method works better too.
Backported from 3.1.1. (#88)

• Permits non-string values for the EXTNAME keyword when reading in a file, rather than throwing an excep-
tion due to the malformatting. Added verification for the format of the EXTNAME keyword when writing.
Backported from 3.1.1. (#96)

• Added support for EXTNAME and EXTVER in PRIMARY HDUs. That is, if EXTNAME is specified in the
header, it will also be reflected in the .name attribute and in pyfits.info(). These keywords used to be
verbotten in PRIMARY HDUs, but the latest version of the FITS standard allows them. Backported from 3.1.1.
(#151)

• HCOMPRESS can again be used to compress data cubes (and higher-dimensional arrays) so long as the tile size
is effectively 2-dimensional. In fact, PyFITS will not automatically use compatible tile sizes even if they’re not
explicitly specified. Backported from 3.1.1. (#171)

• Fixed a bug when writing out files containing zero-width table columns, where the TFIELDS keyword would
be updated incorrectly, leaving the table largely unreadable. Backported from 3.1.0. (#174)

• Fixed an issue where opening files containing random groups HDUs in update mode could cause an unnecessary
rewrite of the file even if none of the data is modified. Backported from 3.1.1. (#179)

• Fixed a bug that could caused a deadlock in the filesystem on OSX if PyFITS is used with Numpy 1.7 in some
cases. Backported from 3.1.1. (#180)

76 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

3.1 (2012-08-08)

Highlights

• The Header object has been significantly reworked, and CardList objects are now deprecated (their func-
tionality folded into the Header class). See API Changes below for more details.

• Memory maps are now used by default to access HDU data. See API Changes below for more details.

• Now includes a new version of the fitsdiff program for comparing two FITS files, and a new FITS compar-
ison API used by fitsdiff. See New Features below.

API Changes

• The Header class has been rewritten, and the CardList class is deprecated. Most of the basic details of
working with FITS headers are unchanged, and will not be noticed by most users. But there are differences
in some areas that will be of interest to advanced users, and to application developers. For full details of the
changes, see the “Header Interface Transition Guide” section in the PyFITS documentation. See ticket #64 on
the PyFITS Trac for futher details and background. Some highlights are listed below:

– The Header class now fully implements the Python dict interface, and can be used interchangably with a
dict, where the keys are header keywords.

– New keywords can be added to the header using normal keyword assignment (previously it was necessary
to use Header.update to add new keywords). For example:

>>> header['NAXIS'] = 2

will update the existing ‘FOO’ keyword if it already exists, or add a new one if it doesn’t exist, just like a
dict.

– It is possible to assign both a value and a comment at the same time using a tuple:

>>> header['NAXIS'] = (2, 'Number of axes')

– To add/update a new card and ensure it’s added in a specific location, use Header.set():

>>> header.set('NAXIS', 2, 'Number of axes', after='BITPIX')

This works the same as the old Header.update(). Header.update() still works in the old way
too, but is deprecated.

– Although Card objects still exist, it generally is not necessary to work with them directly. Header.
ascardlist()/Header.ascard are deprecated and should not be used. To directly access the Card
objects in a header, use Header.cards.

– To access card comments, it is still possible to either go through the card itself, or through Header.
comments. For example:

>>> header.cards['NAXIS'].comment
Number of axes
>>> header.comments['NAXIS']
Number of axes

– Card objects can now be used interchangeably with (keyword, value, comment) 3-tuples. They
still have .value and .comment attributes as well. The .key attribute has been renamed to .keyword
for consistency, though .key is still supported (but deprecated).

1.8. Other Information 77

PyFITS Documentation, Release 3.4

• Memory mapping is now used by default to access HDU data. That is, pyfits.open() uses memmap=True
as the default. This provides better performance in the majority of use cases–there are only some I/O intensive
applications where it might not be desirable. Enabling mmap by default also enabled finding and fixing a large
number of bugs in PyFITS’ handling of memory-mapped data (most of these bug fixes were backported to
PyFITS 3.0.5). (#85)

– A new pyfits.USE_MEMMAP global variable was added. Set pyfits.USE_MEMMAP = False to
change the default memmap setting for opening files. This is especially useful for controlling the behavior
in applications where pyfits is deeply embedded.

– Likewise, a new PYFITS_USE_MEMMAP environment variable is supported. Set
PYFITS_USE_MEMMAP = 0 in your environment to change the default behavior.

• The size() method on HDU objects is now a .size property–this returns the size in bytes of the data portion
of the HDU, and in most cases is equivalent to hdu.data.nbytes (#83)

• BinTableHDU.tdump and BinTableHDU.tcreate are deprecated–use BinTableHDU.dump and
BinTableHDU.load instead. The new methods output the table data in a slightly different format from
previous versions, which places quotes around each value. This format is compatible with data dumps from
previous versions of PyFITS, but not vice-versa due to a parsing bug in older versions.

• Likewise the pyfits.tdump and pyfits.tcreate convenience function versions of these methods have
been renamed pyfits.tabledump and pyfits.tableload. The old deprecated, but currently retained
for backwards compatibility. (r1125)

• A new global variable pyfits.EXTENSION_NAME_CASE_SENSITIVE was added. This serves as a re-
placement for pyfits.setExtensionNameCaseSensitive which is not deprecated and may be re-
moved in a future version. To enable case-sensitivity of extension names (i.e. treat ‘sci’ as distinct from ‘SCI’)
set pyfits.EXTENSION_NAME_CASE_SENSITIVE = True. The default is False. (r1139)

• A new global configuration variable pyfits.STRIP_HEADER_WHITESPACE was added. By default, if a
string value in a header contains trailing whitespace, that whitespace is automatically removed when the value
is read. Now if you set pyfits.STRIP_HEADER_WHITESPACE = False all whitespace is preserved.
(#146)

• The old classExtensions extension mechanism (which was deprecated in PyFITS 3.0) is removed outright.
To our knowledge it was no longer used anywhere. (r1309)

• Warning messages from PyFITS issued through the Python warnings API are now output to stderr instead of
stdout, as is the default. PyFITS no longer modifies the default behavior of the warnings module with respect to
which stream it outputs to. (r1319)

• The checksum argument to pyfits.open() now accepts a value of ‘remove’, which causes any existing
CHECKSUM/DATASUM keywords to be ignored, and removed when the file is saved.

New Features

• Added support for the proposed “FITS” extension HDU type. See http://listmgr.cv.nrao.edu/pipermail/fitsbits/
2002-April/001094.html. FITS HDUs contain an entire FITS file embedded in their data section. FitsHDU
objects work like other HDU types in PyFITS. Their .data attribute returns the raw data array. However,
they have a special .hdulist attribute which processes the data as a FITS file and returns it as an in-memory
HDUList object. FitsHDU objects also support a FitsHDU.fromhdulist() classmethod which returns a
new FitsHDU object that embeds the supplied HDUList. (#80)

• Added a new .is_image attribute on HDU objects, which is True if the HDU data is an ‘image’ as opposed
to a table or something else. Here the meaning of ‘image’ is fairly loose, and mostly just means a Primary or
Image extension HDU, or possibly a compressed image HDU (#71)

78 Chapter 1. Introduction

http://listmgr.cv.nrao.edu/pipermail/fitsbits/2002-April/001094.html
http://listmgr.cv.nrao.edu/pipermail/fitsbits/2002-April/001094.html

PyFITS Documentation, Release 3.4

• Added an HDUList.fromstring classmethod which can parse a FITS file already in memory and instantiate
and HDUList object from it. This could be useful for integrating PyFITS with other libraries that work on FITS
file, such as CFITSIO. It may also be useful in streaming applications. The name is a slight misnomer, in that it
actually accepts any Python object that implements the buffer interface, which includes bytes, bytearray,
memoryview, numpy.ndarray, etc. (#90)

• Added a new pyfits.diff module which contains facilities for comparing FITS files. One can use the
pyfits.diff.FITSDiff class to compare two FITS files in their entirety. There is also a pyfits.
diff.HeaderDiff class for just comparing two FITS headers, and other similar interfaces. See the PyFITS
Documentation for more details on this interface. The pyfits.diff module powers the new fitsdiff
program installed with PyFITS. After installing PyFITS, run fitsdiff --help for usage details.

• pyfits.open() now accepts a scale_back argument. If set to True, this automatically scales the data
using the original BZERO and BSCALE parameters the file had when it was first opened, if any, as well as
the original BITPIX. For example, if the original BITPIX were 16, this would be equivalent to calling hdu.
scale('int16', 'old') just before calling flush() or close() on the file. This option applies to all
HDUs in the file. (#120)

• pyfits.open() now accepts a save_backup argument. If set to True, this automatically saves a backup
of the original file before flushing any changes to it (this of course only applies to update and append mode).
This may be especially useful when working with scaled image data. (#121)

Changes in Behavior

• Warnings from PyFITS are not output to stderr by default, instead of stdout as it has been for some time. This is
contrary to most users’ expectations and makes it more difficult for them to separate output from PyFITS from
the desired output for their scripts. (r1319)

Bug Fixes

• Fixed pyfits.tcreate() (now pyfits.tableload()) to be more robust when encountering blank
lines in a column definition file (#14)

• Fixed a fairly rare crash that could occur in the handling of CONTINUE cards when using Numpy 1.4 or lower
(though 1.4 is the oldest version supported by PyFITS). (r1330)

• Fixed _BaseHDU.fromstring to actually correctly instantiate an HDU object from a string/buffer con-
taining the header and data of that HDU. This allowed for the implementation of HDUList.fromstring
described above. (#90)

• Fixed a rare corner case where, in some use cases, (mildly, recoverably) malformatted float values in headers
were not properly returned as floats. (#137)

• Fixed a corollary to the previous bug where float values with a leading zero before the decimal point had the
leading zero unnecessarily removed when saving changes to the file (eg. “0.001” would be written back as
”.001” even if no changes were otherwise made to the file). (#137)

• When opening a file containing CHECKSUM and/or DATASUM keywords in update mode, the CHECK-
SUM/DATASUM are updated and preserved even if the file was opened with checksum=False. This change
in behavior prevents checksums from being unintentionally removed. (#148)

• Fixed a bug where ImageHDU.scale(option='old') wasn’t working at all–it was not restoring the
image to its original BSCALE and BZERO values. (#162)

• Fixed a bug when writing out files containing zero-width table columns, where the TFIELDS keyword would
be updated incorrectly, leaving the table largely unreadable. This fix will be backported to the 3.0.x series in
version 3.0.10. (#174)

1.8. Other Information 79

PyFITS Documentation, Release 3.4

3.0.9 (2012-08-06)

This is a bug fix release for the 3.0.x series.

Bug Fixes

• Fixed Header.values()/Header.itervalues() and Header.items()/ Header.
iteritems() to correctly return the different values for duplicate keywords (particularly commentary
keywords like HISTORY and COMMENT). This makes the old Header implementation slightly more
compatible with the new implementation in PyFITS 3.1. (#127)

Note: This fix did not change the existing behavior from earlier PyFITS versions where Header.keys()
returns all keywords in the header with duplicates removed. PyFITS 3.1 changes that behavior, so that Header.
keys() includes duplicates.

• Fixed a bug where ImageHDU.scale(option='old') wasn’t working at all–it was not restoring the
image to its original BSCALE and BZERO values. (#162)

• Fixed a bug where opening a file containing compressed image HDUs in ‘update’ mode and then immediately
closing it without making any changes caused the file to be rewritten unnecessarily. (#167)

• Fixed two memory leaks that could occur when writing compressed image data, or in some cases when opening
files containing compressed image HDUs in ‘update’ mode. (#168)

3.0.8 (2012-06-04)

Changes in Behavior

• Prior to this release, image data sections did not work with scaled data–that is, images with non-trivial BSCALE
and/or BZERO values. Previously, in order to read such images in sections, it was necessary to manually apply
the BSCALE+BZERO to each section. It’s worth noting that sections did support pseudo-unsigned ints (flakily).
This change just extends that support for general BSCALE+BZERO values.

Bug Fixes

• Fixed a bug that prevented updates to values in boolean table columns from being saved. This turned out to be
a symptom of a deeper problem that could prevent other table updates from being saved as well. (#139)

• Fixed a corner case in which a keyword comment ending with the string “END” could, in some circumstances,
cause headers (and the rest of the file after that point) to be misread. (#142)

• Fixed support for scaled image data and psuedo-unsigned ints in image data sections (hdu.section). Pre-
viously this was not supported at all. At some point support was supposedly added, but it was buggy and
incomplete. Now the feature seems to work much better. (#143)

• Fixed the documentation to point out that image data sections do support non-contiguous slices (and have for a
long time). The documentation was never updated to reflect this, and misinformed users that only contiguous
slices were supported, leading to some confusion. (#144)

• Fixed a bug where creating an HDUList object containing multiple PRIMARY HDUs caused an infinite recur-
sion when validating the object prior to writing to a file. (#145)

• Fixed a rare but serious case where saving an update to a file that previously had a CHECKSUM and/or DATA-
SUM keyword, but removed the checksum in saving, could cause the file to be slightly corrupted and unreadable.
(#147)

80 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

• Fixed problems with reading “non-standard” FITS files with primary headers containing SIMPLE = F. PyFITS
has never made many guarantees as to how such files are handled. But it should at least be possible to read their
headers, and the data if possible. Saving changes to such a file should not try to prepend an unwanted valid
PRIMARY HDU. (#157)

• Fixed a bug where opening an image with disable_image_compression = True caused compression
to be disabled for all subsequent pyfits.open() calls. (r1651)

3.0.7 (2012-04-10)

Changes in Behavior

• Slices of GroupData objects now return new GroupData objects instead of extended multi-row _Group objects.
This is analogous to how PyFITS 3.0 fixed FITS_rec slicing, and should have been fixed for GroupData at the
same time. The old behavior caused bugs where functions internal to Numpy expected that slicing an ndarray
would return a new ndarray. As this is a rare usecase with a rare feature most users are unlikely to be affected
by this change.

• The previously internal _Group object for representing individual group records in a GroupData object are
renamed Group and are now a public interface. However, there’s almost no good reason to create Group objects
directly, so it shouldn’t be considered a “new feature”.

• An annoyance from PyFITS 3.0.6 was fixed, where the value of the EXTEND keyword was always being set to
F if there are not actually any extension HDUs. It was unnecessary to modify this value.

Bug Fixes

• Fixed GroupData objects to return new GroupData objects when sliced instead of _Group record objects. See
“Changes in behavior” above for more details.

• Fixed slicing of Group objects–previously it was not possible to slice slice them at all.

• Made it possible to assign np.bool_ objects as header values. (#123)

• Fixed overly strict handling of the EXTEND keyword; see “Changes in behavior” above. (#124)

• Fixed many cases where an HDU’s header would be marked as “modified” by PyFITS and rewritten, even when
no changes to the header are necessary. (#125)

• Fixed a bug where the values of the PTYPEn keywords in a random groups HDU were forced to be all lower-case
when saving the file. (#130)

• Removed an unnecessary inline import in ExtensionHDU.__setattr__ that was causing some slowdown
when opening files containing a large number of extensions, plus a few other small (but not insignficant) perfor-
mance improvements thanks to Julian Taylor. (#133)

• Fixed a regression where header blocks containing invalid end-of-header padding (i.e. null bytes instead of
spaces) couldn’t be parsed by PyFITS. Such headers can be parsed again, but a warning is raised, as such
headers are not valid FITS. (#136)

• Fixed a memory leak where table data in random groups HDUs weren’t being garbage collected. (#138)

3.0.6 (2012-02-29)

Highlights

The main reason for this release is to fix an issue that was introduced in PyFITS 3.0.5 where merely opening a file
containing scaled data (that is, with non-trivial BSCALE and BZERO keywords) in ‘update’ mode would cause the
data to be automatically rescaled–possibly converting the data from ints to floats–as soon as the file is closed, even

1.8. Other Information 81

PyFITS Documentation, Release 3.4

if the application did not touch the data. Now PyFITS will only rescale the data in an extension when the data is
actually accessed by the application. So opening a file in ‘update’ mode in order to modify the header or append new
extensions will not cause any change to the data in existing extensions.

This release also fixes a few Windows-specific bugs found through more extensive Windows testing, and other mis-
cellaneous bugs.

Bug Fixes

• More accurate error messages when opening files containing invalid header cards. (#109)

• Fixed a possible reference cycle/memory leak that was caught through more extensive testing on Windows.
(#112)

• Fixed ‘ostream’ mode to open the underlying file in ‘wb’ mode instead of ‘w’ mode. (#112)

• Fixed a Windows-only issue where trying to save updates to a resized FITS file could result in a crash due to
there being open mmaps on that file. (#112)

• Fixed a crash when trying to create a FITS table (i.e. with new_table()) from a Numpy array containing bool
fields. (#113)

• Fixed a bug where manually initializing an HDUList with a list of of HDUs wouldn’t set the correct EXTEND
keyword value on the primary HDU. (#114)

• Fixed a crash that could occur when trying to deepcopy a Header in Python < 2.7. (#115)

• Fixed an issue where merely opening a scaled image in ‘update’ mode would cause the data to be converted to
floats when the file is closed. (#119)

3.0.5 (2012-01-30)

• Fixed a crash that could occur when accessing image sections of files opened with memmap=True. (r1211)

• Fixed the inconsistency in the behavior of files opened in ‘readonly’ mode when memmap=True vs. when
memmap=False. In the latter case, although changes to array data were not saved to disk, it was possible to
update the array data in memory. On the other hand with memmap=True, ‘readonly’ mode prevented even
in-memory modification to the data. This is what ‘copyonwrite’ mode was for, but difference in behavior was
confusing. Now ‘readonly’ is equivalent to ‘copyonwrite’ when using memmap. If the old behavior of denying
changes to the array data is necessary, a new ‘denywrite’ mode may be used, though it is only applicable to files
opened with memmap. (r1275)

• Fixed an issue where files opened with memmap=True would return image data as a raw numpy.memmap object,
which can cause some unexpected behaviors–instead memmap object is viewed as a numpy.ndarray. (r1285)

• Fixed an issue in Python 3 where a workaround for a bug in Numpy on Python 3 interacted badly with some
other software, namely to vo.table package (and possibly others). (r1320, r1337, and #110)

• Fixed buggy behavior in the handling of SIGINTs (i.e. Ctrl-C keyboard interrupts) while flushing changes to a
FITS file. PyFITS already prevented SIGINTs from causing an incomplete flush, but did not clean up the signal
handlers properly afterwards, or reraise the keyboard interrupt once the flush was complete. (r1321)

• Fixed a crash that could occur in Python 3 when opening files with checksum checking enabled. (r1336)

• Fixed a small bug that could cause a crash in the StreamingHDU interface when using Numpy below version
1.5.

• Fixed a crash that could occur when creating a new CompImageHDU from an array of big-endian data. (#104)

• Fixed a crash when opening a file with extra zero padding at the end. Though FITS files should not have such
padding, it’s not explictly forbidden by the format either, and PyFITS shouldn’t stumble over it. (#106)

82 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

• Fixed a major slowdown in opening tables containing large columns of string values. (#111)

3.0.4 (2011-11-22)

• Fixed a crash when writing HCOMPRESS compressed images that could happen on Python 2.5 and 2.6. (r1217)

• Fixed a crash when slicing an table in a file opened in ‘readonly’ mode with memmap=True. (r1230)

• Writing changes to a file or writing to a new file verifies the output in ‘fix’ mode by default instead of
‘exception’–that is, PyFITS will automatically fix common FITS format errors rather than raising an excep-
tion. (r1243)

• Fixed a bug where convenience functions such as getval() and getheader() crashed when specifying just ‘PRI-
MARY’ as the extension to use (r1263).

• Fixed a bug that prevented passing keyword arguments (beyond the standard data and header arguments) as
positional arguments to the constructors of extension HDU classes.

• Fixed some tests that were failing on Windows–in this case the tests themselves failed to close some temp files
and Windows refused to delete them while there were still open handles on them. (r1295)

• Fixed an issue with floating point formatting in header values on Python 2.5 for Windows (and possibly other
platforms). The exponent was zero-padded to 3 digits; although the FITS standard makes no specification on
this, the formatting is now normalized to always pad the exponent to two digits. (r1295)

• Fixed a bug where long commentary cards (such as HISTORY and COMMENT) were broken into multiple
CONTINUE cards. However, commentary cards are not expected to be found in CONTINUE cards. Instead
these long cards are broken into multiple commentary cards. (#97)

• GZIP/ZIP-compressed FITS files can be detected and opened regardless of their filename extension. (#99)

• Fixed a serious bug where opening scaled images in ‘update’ mode and then closing the file without touching
the data would cause the file to be corrupted. (#101)

3.0.3 (2011-10-05)

• Fixed several small bugs involving corner cases in record-valued keyword cards (#70)

• In some cases HDU creation failed if the first keyword value in the header was not a string value (#89)

• Fixed a crash when trying to compute the HDU checksum when the data array contains an odd number of bytes
(#91)

• Disabled an unnecessary warning that was displayed on opening compressed HDUs with dis-
able_image_compression = True (#92)

• Fixed a typo in code for handling HCOMPRESS compressed images.

3.0.2 (2011-09-23)

• The BinTableHDU.tcreate method and by extension the pyfits.tcreate function don’t get tripped
up by blank lines anymore (#14)

• The presence, value, and position of the EXTEND keyword in Primary HDUs is verified when reading/writing
a FITS file (#32)

• Improved documentation (in warning messages as well as in the handbook) that PyFITS uses zero-based in-
dexing (as one would expect for C/Python code, but contrary to the PyFITS standard which was written with
FORTRAN in mind) (#68)

• Fixed a bug where updating a header card comment could cause the value to be lost if it had not already been
read from the card image string.

1.8. Other Information 83

PyFITS Documentation, Release 3.4

• Fixed a related bug where changes made directly to Card object in a header (i.e. assigning directly to card.value
or card.comment) would not propagate when flushing changes to the file (#69) [Note: This and the bug above it
were originally reported as being fixed in version 3.0.1, but the fix was never included in the release.]

• Improved file handling, particularly in Python 3 which had a few small file I/O-related bugs (#76)

• Fixed a bug where updating a FITS file would sometimes cause it to lose its original file permissions (#79)

• Fixed the handling of TDIMn keywords; 3.0 added support for them, but got the axis order backards (they were
treated as though they were row-major) (#82)

• Fixed a crash when a FITS file containing scaled data is opened and immediately written to a new file without
explicitly viewing the data first (#84)

• Fixed a bug where creating a table with columns named either ‘names’ or ‘formats’ resulted in an infinite
recursion (#86)

3.0.1 (2011-09-12)

• Fixed a bug where updating a header card comment could cause the value to be lost if it had not already been
read from the card image string.

• Changed _TableBaseHDU.data so that if the data contain an empty table a FITS_rec object with zero
rows is returned rather than None.

• The .key attribute of RecordValuedKeywordCards now returns the full keyword+field-specifier value,
instead of just the plain keyword (#46)

• Fixed a related bug where changes made directly to Card object in a header (i.e. assigning directly to card.value
or card.comment) would not propagate when flushing changes to the file (#69)

• Fixed a bug where writing a table with zero rows could fail in some cases (#72)

• Miscellaneous small bug fixes that were causing some tests to fail, particularly on Python 3 (#74, #75)

• Fixed a bug where creating a table column from an array in non-native byte order would not preserve the byte
order, thus interpreting the column array using the wrong byte order (#77)

3.0.0 (2011-08-23)

• Contains major changes, bumping the version to 3.0

• Large amounts of refactoring and reorganization of the code; tried to preserve public API backwards-
compatibility with older versions (private API has many changes and is not guaranteed to be backwards-
compatible). There are a few small public API changes to be aware of:

– The pyfits.rec module has been removed completely. If your version of numpy does not have the
numpy.core.records module it is too old to be used with PyFITS.

– The Header.ascardlist() method is deprecated–use the .ascard attribute instead.

– Card instances have a new .cardimage attribute that should be used rather than .ascardimage(),
which may become deprecated.

– The Card.fromstring() method is now a classmethod. It returns a new Card instance rather than
modifying an existing instance.

– The req_cards() method on HDU instances has changed: The pos argument is not longer a string. It
is either an integer value (meaning the card’s position must match that value) or it can be a function that
takes the card’s position as it’s argument, and returns True if the position is valid. Likewise, the test
argument no longer takes a string, but instead a function that validates the card’s value and returns True or
False.

– The get_coldefs() method of table HDUs is deprecated. Use the .columns attribute instead.

84 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

– The ColDefs.data attribute is deprecated–use ColDefs.columns instead (though in general you
shouldn’t mess with it directly–it might become internal at some point).

– FITS_record objects take start and end as arguments instead of startColumn and endColumn
(these are rarely created manually, so it’s unlikely that this change will affect anyone).

– BinTableHDU.tcreate() is now a classmethod, and returns a new BinTableHDU instance.

– Use ExtensionHDU and NonstandardExtHDU for making new extension HDU classes. They are
now public interfaces, wheres previously they were private and prefixed with underscores.

– Possibly others–please report if you find any changes that cause difficulties.

• Calls to deprecated functions will display a Deprecation warning. However, in Python 2.7 and up Deprecation
warnings are ignored by default, so run Python with the -Wd option to see if you’re using any deprecated
functions. If we get close to actually removing any functions, we might make the Deprecation warnings display
by default.

• Added basic Python 3 support

• Added support for multi-dimensional columns in tables as specified by the TDIMn keywords (#47)

• Fixed a major memory leak that occurred when creating new tables with the new_table() function (#49) be
padded with zero-bytes) vs ASCII tables (where strings are padded with spaces) (#15)

• Fixed a bug in which the case of Random Access Group parameters names was not preserved when writing
(#41)

• Added support for binary table fields with zero width (#42)

• Added support for wider integer types in ASCII tables; although this is non- standard, some GEIS images require
it (#45)

• Fixed a bug that caused the index_of() method of HDULists to crash when the HDUList object is created from
scratch (#48)

• Fixed the behavior of string padding in binary tables (where strings should be padded with nulls instead of
spaces)

• Fixed a rare issue that caused excessive memory usage when computing checksums using a non-standard block
size (see r818)

• Add support for forced uint data in image sections (#53)

• Fixed an issue where variable-length array columns were not extended when creating a new table with more
rows than the original (#54)

• Fixed tuple and list-based indexing of FITS_rec objects (#55)

• Fixed an issue where BZERO and BSCALE keywords were appended to headers in the wrong location (#56)

• FITS_record objects (table rows) have full slicing support, including stepping, etc. (#59)

• Fixed a bug where updating multiple files simultaneously (such as when running parallel processes) could lead
to a race condition with mktemp() (#61)

• Fixed a bug where compressed image headers were not in the order expected by the funpack utility (#62)

2.4.0 (2011-01-10)

The following enhancements were added:

• Checksum support now correctly conforms to the FITS standard. pyfits supports reading and writing both the
old checksums and new standard-compliant checksums. The fitscheck command-line utility is provided to
verify and update checksums.

1.8. Other Information 85

PyFITS Documentation, Release 3.4

• Added a new optional keyword argument do_not_scale_image_data to the pyfits.open conve-
nience function. When this argument is provided as True, and an ImageHDU is read that contains scaled
data, the data is not automatically scaled when it is read. This option may be used when opening a fits file for
update, when you only want to update some header data. Without the use of this argument, if the header updates
required the size of the fits file to change, then when writing the updated information, the data would be read,
scaled, and written back out in its scaled format (usually with a different data type) instead of in its non-scaled
format.

• Added a new optional keyword argument disable_image_compression to the pyfits.open function.
When True, any compressed image HDU’s will be read in like they are binary table HDU’s.

• Added a verify keyword argument to the pyfits.append function. When False, append will assume
the existing FITS file is already valid and simply append new content to the end of the file, resulting in a large
speed up appending to large files.

• Added HDU methods update_ext_name and update_ext_version for updating the name and version
of an HDU.

• Added HDU method filebytes to calculate the number of bytes that will be written to the file associated
with the HDU.

• Enhanced the section class to allow reading non-contiguous image data. Previously, the section class could only
be used to read contiguous data. (CNSHD781626)

• Added method HDUList.fileinfo() that returns a dictionary with information about the location of header
and data in the file associated with the HDU.

The following bugs were fixed:

• Reading in some malformed FITS headers would cause a NameError exception, rather than information about
the cause of the error.

• pyfits can now handle non-compliant CONTINUE cards produced by Java FITS.

• BinTable columns with TSCALn are now byte-swapped correctly.

• Ensure that floating-point card values are no longer than 20 characters.

• Updated flush so that when the data has changed in an HDU for a file opened in update mode, the header will
be updated to match the changed data before writing out the HDU.

• Allow HIERARCH cards to contain a keyword and value whose total character length is 69 characters. Previous
length was limited at 68 characters.

• Calls to FITS_rec['columnName'] now return an ndarray. exactly the same as a call to FITS_rec.
field('columnName') or FITS_rec.columnName. Previously, FITS_rec['columnName'] re-
turned a much less useful fits_record object. (CNSHD789053)

• Corrected the append convenience function to eliminate the reading of the HDU data from the file that is being
appended to. (CNSHD794738)

• Eliminated common symbols between the pyfitsComp module and the cfitsio and zlib libraries. These can cause
problems on systems that use both PyFITS and cfitsio or zlib. (CNSHD795046)

2.3.1 (2010-06-03)

The following bugs were fixed:

• Replaced code in the Compressed Image HDU extension which was covered under a GNU General Public
License with code that is covered under a BSD License. This change allows the distribution of pyfits under a
BSD License.

86 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

2.3 (2010-05-11)

The following enhancements were made:

• Completely eliminate support for numarray.

• Rework pyfits documention to use Sphinx.

• Support python 2.6 and future division.

• Added a new method to get the file name associated with an HDUList object. The method HDUList.filename()
returns the name of an associated file. It returns None if no file is associated with the HDUList.

• Support the python 2.5 ‘with’ statement when opening fits files. (CNSHD766308) It is now possible to use the
following construct:

>>> from __future__ import with_statement import pyfits
>>> with pyfits.open("input.fits") as hdul:
... #process hdul
>>>

• Extended the support for reading unsigned integer 16 values from an ImageHDU to include unsigned integer
32 and unsigned integer 64 values. ImageHDU data is considered to be unsigned integer 16 when the data type
is signed integer 16 and BZERO is equal to 2**15 (32784) and BSCALE is equal to 1. ImageHDU data is
considered to be unsigned integer 32 when the data type is signed integer 32 and BZERO is equal to 2**31 and
BSCALE is equal to 1. ImageHDU data is considered to be unsigned integer 64 when the data type is signed
integer 64 and BZERO is equal to 2**63 and BSCALE is equal to 1. An optional keyword argument (uint)
was added to the open convenience function for this purpose. Supplying a value of True for this argument will
cause data of any of these types to be read in and scaled into the appropriate unsigned integer array (uint16,
uint32, or uint64) instead of into the normal float 32 or float 64 array. If an HDU associated with a file that was
opened with the ‘int’ option and containing unsigned integer 16, 32, or 64 data is written to a file, the data will
be reverse scaled into a signed integer 16, 32, or 64 array and written out to the file along with the appropriate
BSCALE/BZERO header cards. Note that for backward compatability, the ‘uint16’ keyword argument will still
be accepted in the open function when handling unsigned integer 16 conversion.

• Provided the capability to access the data for a column of a fits table by indexing the table using the column
name. This is consistent with Record Arrays in numpy (array with fields). (CNSHD763378) The following
example will illustrate this:

>>> import pyfits
>>> hdul = pyfits.open('input.fits')
>>> table = hdul[1].data
>>> table.names
['c1','c2','c3','c4']
>>> print table.field('c2') # this is the data for column 2
['abc' 'xy']
>>> print table['c2'] # this is also the data for column 2
array(['abc', 'xy '], dtype='|S3')
>>> print table[1] # this is the data for row 1
(2, 'xy', 6.6999997138977054, True)

• Provided capabilities to create a BinaryTableHDU directly from a numpy Record Array (array with fields).
The new capabilities include table creation, writing a numpy Record Array directly to a fits file using the py-
fits.writeto and pyfits.append convenience functions. Reading the data for a BinaryTableHDU from a fits file
directly into a numpy Record Array using the pyfits.getdata convenience function. (CNSHD749034) Thanks to
Erin Sheldon at Brookhaven National Laboratory for help with this.

The following should illustrate these new capabilities:

1.8. Other Information 87

PyFITS Documentation, Release 3.4

>>> import pyfits
>>> import numpy
>>> t=numpy.zeros(5,dtype=[('x','f4'),('y','2i4')]) \
... # Create a numpy Record Array with fields
>>> hdu = pyfits.BinTableHDU(t) \
... # Create a Binary Table HDU directly from the Record Array
>>> print hdu.data
[(0.0, array([0, 0], dtype=int32))
(0.0, array([0, 0], dtype=int32))
(0.0, array([0, 0], dtype=int32))
(0.0, array([0, 0], dtype=int32))
(0.0, array([0, 0], dtype=int32))]

>>> hdu.writeto('test1.fits',clobber=True) \
... # Write the HDU to a file
>>> pyfits.info('test1.fits')
Filename: test1.fits
No. Name Type Cards Dimensions Format
0 PRIMARY PrimaryHDU 4 () uint8
1 BinTableHDU 12 5R x 2C [E, 2J]
>>> pyfits.writeto('test.fits', t, clobber=True) \
... # Write the Record Array directly to a file
>>> pyfits.append('test.fits', t) \
... # Append another Record Array to the file
>>> pyfits.info('test.fits')
Filename: test.fits
No. Name Type Cards Dimensions Format
0 PRIMARY PrimaryHDU 4 () uint8
1 BinTableHDU 12 5R x 2C [E, 2J]
2 BinTableHDU 12 5R x 2C [E, 2J]
>>> d=pyfits.getdata('test.fits',ext=1) \
... # Get the first extension from the file as a FITS_rec
>>> print type(d)
<class 'pyfits.core.FITS_rec'>
>>> print d
[(0.0, array([0, 0], dtype=int32))
(0.0, array([0, 0], dtype=int32))
(0.0, array([0, 0], dtype=int32))
(0.0, array([0, 0], dtype=int32))
(0.0, array([0, 0], dtype=int32))]

>>> d=pyfits.getdata('test.fits',ext=1,view=numpy.ndarray) \
... # Get the first extension from the file as a numpy Record

Array
>>> print type(d)
<type 'numpy.ndarray'>
>>> print d
[(0.0, [0, 0]) (0.0, [0, 0]) (0.0, [0, 0]) (0.0, [0, 0])
(0.0, [0, 0])]

>>> print d.dtype
[('x', '>f4'), ('y', '>i4', 2)]
>>> d=pyfits.getdata('test.fits',ext=1,upper=True,
... view=pyfits.FITS_rec) \
... # Force the Record Array field names to be in upper case

regardless of how they are stored in the file
>>> print d.dtype
[('X', '>f4'), ('Y', '>i4', 2)]

• Provided support for writing fits data to file-like objects that do not support the random access methods seek()
and tell(). Most pyfits functions or methods will treat these file-like objects as an empty file that cannot be read,

88 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

only written. It is also expected that the file-like object is in a writable condition (ie. opened) when passed into
a pyfits function or method. The following methods and functions will allow writing to a non-random access
file-like object: HDUList.writeto(), HDUList.flush(), pyfits.writeto(), and pyfits.append(). The pyfits.open()
convenience function may be used to create an HDUList object that is associated with the provided file-like
object. (CNSHD770036)

An illustration of the new capabilities follows. In this example fits data is written to standard output which is
associated with a file opened in write-only mode:

>>> import pyfits
>>> import numpy as np
>>> import sys
>>>
>>> hdu = pyfits.PrimaryHDU(np.arange(100,dtype=np.int32))
>>> hdul = pyfits.HDUList()
>>> hdul.append(hdu)
>>> tmpfile = open('tmpfile.py','w')
>>> sys.stdout = tmpfile
>>> hdul.writeto(sys.stdout, clobber=True)
>>> sys.stdout = sys.__stdout__
>>> tmpfile.close()
>>> pyfits.info('tmpfile.py')
Filename: tmpfile.py
No. Name Type Cards Dimensions Format
0 PRIMARY PrimaryHDU 5 (100,) int32
>>>

• Provided support for slicing a FITS_record object. The FITS_record object represents the data from a row of
a table. Pyfits now supports the slice syntax to retrieve values from the row. The following illustrates this new
syntax:

>>> hdul = pyfits.open('table.fits')
>>> row = hdul[1].data[0]
>>> row
('clear', 'nicmos', 1, 30, 'clear', 'idno= 100')
>>> a, b, c, d, e = row[0:5]
>>> a
'clear'
>>> b
'nicmos'
>>> c
1
>>> d
30
>>> e
'clear'
>>>

• Allow the assignment of a row value for a pyfits table using a tuple or a list as input. The following example
illustrates this new feature:

>>> c1=pyfits.Column(name='target',format='10A')
>>> c2=pyfits.Column(name='counts',format='J',unit='DN')
>>> c3=pyfits.Column(name='notes',format='A10')
>>> c4=pyfits.Column(name='spectrum',format='5E')
>>> c5=pyfits.Column(name='flag',format='L')
>>> coldefs=pyfits.ColDefs([c1,c2,c3,c4,c5])
>>>

1.8. Other Information 89

PyFITS Documentation, Release 3.4

>>> tbhdu=pyfits.new_table(coldefs, nrows = 5)
>>>
>>> # Assigning data to a table's row using a tuple
>>> tbhdu.data[2] = ('NGC1',312,'A Note',
... num.array([1.1,2.2,3.3,4.4,5.5],dtype=num.float32),
... True)
>>>
>>> # Assigning data to a tables row using a list
>>> tbhdu.data[3] = ['JIM1','33','A Note',
... num.array([1.,2.,3.,4.,5.],dtype=num.float32),True]

• Allow the creation of a Variable Length Format (P format) column from a list of data. The following example
illustrates this new feature:

>>> a = [num.array([7.2e-20,7.3e-20]),num.array([0.0]),
... num.array([0.0])]
>>> acol = pyfits.Column(name='testa',format='PD()',array=a)
>>> acol.array
_VLF([[7.20000000e-20 7.30000000e-20], [0.], [0.]],
dtype=object)
>>>

• Allow the assignment of multiple rows in a table using the slice syntax. The following example illustrates this
new feature:

>>> counts = num.array([312,334,308,317])
>>> names = num.array(['NGC1','NGC2','NGC3','NCG4'])
>>> c1=pyfits.Column(name='target',format='10A',array=names)
>>> c2=pyfits.Column(name='counts',format='J',unit='DN',
... array=counts)
>>> c3=pyfits.Column(name='notes',format='A10')
>>> c4=pyfits.Column(name='spectrum',format='5E')
>>> c5=pyfits.Column(name='flag',format='L',array=[1,0,1,1])
>>> coldefs=pyfits.ColDefs([c1,c2,c3,c4,c5])
>>>
>>> tbhdu1=pyfits.new_table(coldefs)
>>>
>>> counts = num.array([112,134,108,117])
>>> names = num.array(['NGC5','NGC6','NGC7','NCG8'])
>>> c1=pyfits.Column(name='target',format='10A',array=names)
>>> c2=pyfits.Column(name='counts',format='J',unit='DN',
... array=counts)
>>> c3=pyfits.Column(name='notes',format='A10')
>>> c4=pyfits.Column(name='spectrum',format='5E')
>>> c5=pyfits.Column(name='flag',format='L',array=[0,1,0,0])
>>> coldefs=pyfits.ColDefs([c1,c2,c3,c4,c5])
>>>
>>> tbhdu=pyfits.new_table(coldefs)
>>> tbhdu.data[0][3] = num.array([1.,2.,3.,4.,5.],
... dtype=num.float32)
>>>
>>> tbhdu2=pyfits.new_table(tbhdu1.data, nrows=9)
>>>
>>> # Assign the 4 rows from the second table to rows 5 thru
... 8 of the new table. Note that the last row of the new
... table will still be initialized to the default values.
>>> tbhdu2.data[4:] = tbhdu.data
>>>

90 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

>>> print tbhdu2.data
[('NGC1', 312, '0.0', array([0., 0., 0., 0., 0.],
dtype=float32), True)
('NGC2', 334, '0.0', array([0., 0., 0., 0., 0.],

dtype=float32), False)
('NGC3', 308, '0.0', array([0., 0., 0., 0., 0.],

dtype=float32), True)
('NCG4', 317, '0.0', array([0., 0., 0., 0., 0.],

dtype=float32), True)
('NGC5', 112, '0.0', array([1., 2., 3., 4., 5.],

dtype=float32), False)
('NGC6', 134, '0.0', array([0., 0., 0., 0., 0.],

dtype=float32), True)
('NGC7', 108, '0.0', array([0., 0., 0., 0., 0.],

dtype=float32), False)
('NCG8', 117, '0.0', array([0., 0., 0., 0., 0.],

dtype=float32), False)
('0.0', 0, '0.0', array([0., 0., 0., 0., 0.],

dtype=float32), False)]
>>>

The following bugs were fixed:

• Corrected bugs in HDUList.append and HDUList.insert to correctly handle the situation where you want to
insert or append a Primary HDU as something other than the first HDU in an HDUList and the situation where
you want to insert or append an Extension HDU as the first HDU in an HDUList.

• Corrected a bug involving scaled images (both compressed and not compressed) that include a BLANK, or
ZBLANK card in the header. When the image values match the BLANK or ZBLANK value, the value should
be replaced with NaN after scaling. Instead, pyfits was scaling the BLANK or ZBLANK value and returning it.
(CNSHD766129)

• Corrected a byteswapping bug that occurs when writing certain column data. (CNSHD763307)

• Corrected a bug that occurs when creating a column from a chararray when one or more elements are shorter
than the specified format length. The bug wrote nulls instead of spaces to the file. (CNSHD695419)

• Corrected a bug in the HDU verification software to ensure that the header contains no NAXISn cards where n
> NAXIS.

• Corrected a bug involving reading and writing compressed image data. When written, the header keyword card
ZTENSION will always have the value ‘IMAGE’ and when read, if the ZTENSION value is not ‘IMAGE’ the
user will receive a warning, but the data will still be treated as image data.

• Corrected a bug that restricted the ability to create a custom HDU class and use it with pyfits. The bug fix will
allow something like this:

>>> import pyfits
>>> class MyPrimaryHDU(pyfits.PrimaryHDU):
... def __init__(self, data=None, header=None):
... pyfits.PrimaryHDU.__init__(self, data, header)
... def _summary(self):
... """
... Reimplement a method of the class.
... """
... s = pyfits.PrimaryHDU._summary(self)
... # change the behavior to suit me.
... s1 = 'MyPRIMARY ' + s[11:]
... return s1
...

1.8. Other Information 91

PyFITS Documentation, Release 3.4

>>> hdul=pyfits.open("pix.fits",
... classExtensions={pyfits.PrimaryHDU: MyPrimaryHDU})
>>> hdul.info()
Filename: pix.fits
No. Name Type Cards Dimensions Format
0 MyPRIMARY MyPrimaryHDU 59 (512, 512) int16
>>>

• Modified ColDefs.add_col so that instead of returning a new ColDefs object with the column added to the end,
it simply appends the new column to the current ColDefs object in place. (CNSHD768778)

• Corrected a bug in ColDefs.del_col which raised a KeyError exception when deleting a column from a ColDefs
object.

• Modified the open convenience function so that when a file is opened in readonly mode and the file contains no
HDU’s an IOError is raised.

• Modified _TableBaseHDU to ensure that all locations where data is referenced in the object actually reference
the same ndarray, instead of copies of the array.

• Corrected a bug in the Column class that failed to initialize data when the data is a boolean array. (CN-
SHD779136)

• Corrected a bug that caused an exception to be raised when creating a variable length format column from
character data (PA format).

• Modified installation code so that when installing on Windows, when a C++ compiler compatible with the
Python binary is not found, the installation completes with a warning that all optional extension modules failed
to build. Previously, an Error was issued and the installation stopped.

2.2.2 (2009-10-12)

Updates described in this release are only supported in the NUMPY version of pyfits.

The following bugs were fixed:

• Corrected a bug that caused an exception to be raised when creating a CompImageHDU using an initial header
that does not match the image data in terms of the number of axis.

2.2.1 (2009-10-06)

Updates described in this release are only supported in the NUMPY version of pyfits.

The following bugs were fixed:

• Corrected a bug that prevented the opening of a fits file where a header contained a CHECKSUM card but no
DATASUM card.

• Corrected a bug that caused NULLs to be written instead of blanks when an ASCII table was created using a
numpy chararray in which the original data contained trailing blanks. (CNSHD695419)

2.2 (2009-09-23)

Updates described in this release are only supported in the NUMPY version of pyfits.

The following enhancements were made:

• Provide support for the FITS Checksum Keyword Convention. (CNSHD754301)

• Adding the checksum=True keyword argument to the open convenience function will cause checksums to be
verified on file open:

92 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

>>> hdul=pyfits.open('in.fits', checksum=True)

• On output, CHECKSUM and DATASUM cards may be output to all HDU’s in a fits file by using the keyword
argument checksum=True in calls to the writeto convenience function, the HDUList.writeto method, the writeto
methods of all of the HDU classes, and the append convenience function:

>>> hdul.writeto('out.fits', checksum=True)

• Implemented a new insert method to the HDUList class that allows for the insertion of a HDU into a HDUList
at a given index:

>>> hdul.insert(2,hdu)

• Provided the capability to handle unicode input for file names.

• Provided support for integer division required by Python 3.0.

The following bugs were fixed:

• Corrected a bug that caused an index out of bounds exception to be raised when iterating over the rows of a
binary table HDU using the syntax “for row in tbhdu.data: ”. (CNSHD748609)

• Corrected a bug that prevented the use of the writeto convenience function for writing table data to a file.
(CNSHD749024)

• Modified the code to raise an IOError exception with the comment “Header missing END card.” when pyfits
can’t find a valid END card for a header when opening a file.

– This change addressed a problem with a non-standard fits file that contained several new-line characters at
the end of each header and at the end of the file. However, since some people want to be able to open these
non-standard files anyway, an option was added to the open convenience function to allow these files to be
opened without exception:

>>> pyfits.open('infile.fits',ignore_missing_end=True)

• Corrected a bug that prevented the use of StringIO objects as fits files when reading and writing table data.
Previously, only image data was supported. (CNSHD753698)

• Corrected a bug that caused a bus error to be generated when compressing image data using GZIP_1 under the
Solaris operating system.

• Corrected bugs that prevented pyfits from properly reading Random Groups HDU’s using numpy. (CN-
SHD756570)

• Corrected a bug that can occur when writing a fits file. (CNSHD757508)

– If no default SIGINT signal handler has not been assigned, before the write, a TypeError exception is raised
in the _File.flush() method when attempting to return the signal handler to its previous state. Notably this
occurred when using mod_python. The code was changed to use SIG_DFL when no old handler was
defined.

• Corrected a bug in CompImageHDU that prevented rescaling the image data using hdu.scale(option=’old’).

2.1.1 (2009-04-22)

Updates described in this release are only supported in the NUMPY version of pyfits.

The following bugs were fixed:

• Corrected a bug that caused an exception to be raised when closing a file opened for append, where an HDU
was appended to the file, after data was accessed from the file. This exception was only raised when running on
a Windows platform.

1.8. Other Information 93

PyFITS Documentation, Release 3.4

• Updated the installation scripts, compression source code, and benchmark test scripts to properly install, build,
and execute on a Windows platform.

2.1 (2009-04-14)

Updates described in this release are only supported in the NUMPY version of pyfits.

The following enhancements were made:

• Added new tdump and tcreate capabilities to pyfits.

– The new tdump convenience function allows the contents of a binary table HDU to be dumped to a set
of three files in ASCII format. One file will contain column definitions, the second will contain header
parameters, and the third will contain header data.

– The new tcreate convenience function allows the creation of a binary table HDU from the three files
dumped by the tdump convenience function.

– The primary use for the tdump/tcreate methods are to allow editing in a standard text editor of the binary
table data and parameters.

• Added support for case sensitive values of the EXTNAME card in an extension header. (CNSHD745784)

– By default, pyfits converts the value of EXTNAME cards to upper case when reading from a file. A new
convenience function (setExtensionNameCaseSensitive) was implemented to allow a user to circumvent
this behavior so that the EXTNAME value remains in the same case as it is in the file.

– With the following function call, pyfits will maintain the case of all characters in the EXTNAME card
values of all extension HDU’s during the entire python session, or until another call to the function is
made:

>>> import pyfits
>>> pyfits.setExtensionNameCaseSensitive()

– The following function call will return pyfits to its default (all upper case) behavior:

>>> pyfits.setExtensionNameCaseSensitive(False)

• Added support for reading and writing FITS files in which the value of the first card in the header is ‘SIM-
PLE=F’. In this case, the pyfits open function returns an HDUList object that contains a single HDU of the
new type _NonstandardHDU. The header for this HDU is like a normal header (with the exception that the first
card contains SIMPLE=F instead of SIMPLE=T). Like normal HDU’s the reading of the data is delayed until
actually requested. The data is read from the file into a string starting from the first byte after the header END
card and continuing till the end of the file. When written, the header is written, followed by the data string. No
attempt is made to pad the data string so that it fills into a standard 2880 byte FITS block. (CNSHD744730)

• Added support for FITS files containing extensions with unknown XTENSION card values. (CNSHD744730)
Standard FITS files support extension HDU’s of types TABLE, IMAGE, BINTABLE, and A3DTABLE. Ac-
cessing a nonstandard extension from a FITS file will now create a _NonstandardExtHDU object. Accessing
the data of this object will cause the data to be read from the file into a string. If the HDU is written back to a
file the string data is written after the Header and padded to fill a standard 2880 byte FITS block.

The following bugs were fixed:

• Extensive changes were made to the tiled image compression code to support the latest enhancements made in
CFITSIO version 3.13 to support this convention.

• Eliminated a memory leak in the tiled image compression code.

• Corrected a bug in the FITS_record.__setitem__ method which raised a NameError exception when attempting
to set a value in a FITS_record object. (CNSHD745844)

94 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

• Corrected a bug that caused a TypeError exception to be raised when reading fits files containing large table
HDU’s (>2Gig). (CNSHD745522)

• Corrected a bug that caused a TypeError exception to be raised for all calls to the warnings module when running
under Python 2.6. The formatwarning method in the warnings module was changed in Python 2.6 to include a
new argument. (CNSHD746592)

• Corrected the behavior of the membership (in) operator in the Header class to check against header card key-
words instead of card values. (CNSHD744730)

• Corrected the behavior of iteration on a Header object. The new behavior iterates over the unique card keywords
instead of the card values.

2.0.1 (2009-02-03)

Updates described in this release are only supported in the NUMPY version of pyfits.

The following bugs were fixed:

• Eliminated a memory leak when reading Table HDU’s from a fits file. (CNSHD741877)

2.0 (2009-01-30)

Updates described in this release are only supported in the NUMPY version of pyfits.

The following enhancements were made:

• Provide initial support for an image compression convention known as the “Tiled Image Compression Conven-
tion” [1].

– The principle used in this convention is to first divide the n-dimensional image into a rectangular grid
of subimages or “tiles”. Each tile is then compressed as a continuous block of data, and the resulting
compressed byte stream is stored in a row of a variable length column in a FITS binary table. Several
commonly used algorithms for compressing image tiles are supported. These include, GZIP, RICE, H-
Compress and IRAF pixel list (PLIO).

– Support for compressed image data is provided using the optional “pyfitsComp” module contained in a C
shared library (pyfitsCompmodule.so).

– The header of a compressed image HDU appears to the user like any image header. The actual header
stored in the FITS file is that of a binary table HDU with a set of special keywords, defined by the conven-
tion, to describe the structure of the compressed image. The conversion between binary table HDU header
and image HDU header is all performed behind the scenes. Since the HDU is actually a binary table, it
may not appear as a primary HDU in a FITS file.

– The data of a compressed image HDU appears to the user as standard uncompressed image data. The actual
data is stored in the fits file as Binary Table data containing at least one column (COMPRESSED_DATA).
Each row of this variable-length column contains the byte stream that was generated as a result of com-
pressing the corresponding image tile. Several optional columns may also appear. These include, UN-
COMPRESSED_DATA to hold the uncompressed pixel values for tiles that cannot be compressed, ZS-
CALE and ZZERO to hold the linear scale factor and zero point offset which may be needed to transform
the raw uncompressed values back to the original image pixel values, and ZBLANK to hold the integer
value used to represent undefined pixels (if any) in the image.

– To create a compressed image HDU from scratch, simply construct a CompImageHDU object from an
uncompressed image data array and its associated image header. From there, the HDU can be treated just
like any image HDU:

>>> hdu=pyfits.CompImageHDU(imageData,imageHeader)
>>> hdu.writeto('compressed_image.fits')

1.8. Other Information 95

http://fits.gsfc.nasa.gov/registry/tilecompression.html

PyFITS Documentation, Release 3.4

– The signature for the CompImageHDU initializer method describes the possible options for constructing
a CompImageHDU object:

def __init__(self, data=None, header=None, name=None,
compressionType='RICE_1',
tileSize=None,
hcompScale=0.,
hcompSmooth=0,
quantizeLevel=16.):

"""
data: data of the image
header: header to be associated with the

image
name: the EXTNAME value; if this value

is None, then the name from the
input image header will be used;
if there is no name in the input
image header then the default name
'COMPRESSED_IMAGE' is used

compressionType: compression algorithm 'RICE_1',
'PLIO_1', 'GZIP_1', 'HCOMPRESS_1'

tileSize: compression tile sizes default
treats each row of image as a tile

hcompScale: HCOMPRESS scale parameter
hcompSmooth: HCOMPRESS smooth parameter
quantizeLevel: floating point quantization level;

"""

• Added two new convenience functions. The setval function allows the setting of the value of a single header
card in a fits file. The delval function allows the deletion of a single header card in a fits file.

• A modification was made to allow the reading of data from a fits file containing a Table HDU that has duplicate
field names. It is normally a requirement that the field names in a Table HDU be unique. Prior to this change a
ValueError was raised, when the data was accessed, to indicate that the HDU contained duplicate field names.
Now, a warning is issued and the field names are made unique in the internal record array. This will not change
the TTYPEn header card values. You will be able to get the data from all fields using the field name, including
the first field containing the name that is duplicated. To access the data of the other fields with the duplicated
names you will need to use the field number instead of the field name. (CNSHD737193)

• An enhancement was made to allow the reading of unsigned integer 16 values from an ImageHDU when the
data is signed integer 16 and BZERO is equal to 32784 and BSCALE is equal to 1 (the standard way for scaling
unsigned integer 16 data). A new optional keyword argument (uint16) was added to the open convenience
function. Supplying a value of True for this argument will cause data of this type to be read in and scaled into
an unsigned integer 16 array, instead of a float 32 array. If a HDU associated with a file that was opened with
the uint16 option and containing unsigned integer 16 data is written to a file, the data will be reverse scaled into
an integer 16 array and written out to the file and the BSCALE/BZERO header cards will be written with the
values 1 and 32768 respectively. (CHSHD736064) Reference the following example:

>>> import pyfits
>>> hdul=pyfits.open('o4sp040b0_raw.fits',uint16=1)
>>> hdul[1].data
array([[1507, 1509, 1505, ..., 1498, 1500, 1487],

[1508, 1507, 1509, ..., 1498, 1505, 1490],
[1505, 1507, 1505, ..., 1499, 1504, 1491],
...,
[1505, 1506, 1507, ..., 1497, 1502, 1487],
[1507, 1507, 1504, ..., 1495, 1499, 1486],
[1515, 1507, 1504, ..., 1492, 1498, 1487]], dtype=uint16)

96 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

>>> hdul.writeto('tmp.fits')
>>> hdul1=pyfits.open('tmp.fits',uint16=1)
>>> hdul1[1].data
array([[1507, 1509, 1505, ..., 1498, 1500, 1487],

[1508, 1507, 1509, ..., 1498, 1505, 1490],
[1505, 1507, 1505, ..., 1499, 1504, 1491],
...,
[1505, 1506, 1507, ..., 1497, 1502, 1487],
[1507, 1507, 1504, ..., 1495, 1499, 1486],
[1515, 1507, 1504, ..., 1492, 1498, 1487]], dtype=uint16)

>>> hdul1=pyfits.open('tmp.fits')
>>> hdul1[1].data
array([[1507., 1509., 1505., ..., 1498., 1500., 1487.],

[1508., 1507., 1509., ..., 1498., 1505., 1490.],
[1505., 1507., 1505., ..., 1499., 1504., 1491.],
...,
[1505., 1506., 1507., ..., 1497., 1502., 1487.],
[1507., 1507., 1504., ..., 1495., 1499., 1486.],
[1515., 1507., 1504., ..., 1492., 1498., 1487.]], dtype=float32)

• Enhanced the message generated when a ValueError exception is raised when attempting to access a header card
with an unparsable value. The message now includes the Card name.

The following bugs were fixed:

• Corrected a bug that occurs when appending a binary table HDU to a fits file. Data was not being byteswapped
on little endian machines. (CNSHD737243)

• Corrected a bug that occurs when trying to write an ImageHDU that is missing the required PCOUNT card in the
header. An UnboundLocalError exception complaining that the local variable ‘insert_pos’ was referenced before
assignment was being raised in the method _ValidHDU.req_cards. The code was modified so that it would
properly issue a more meaningful ValueError exception with a description of what required card is missing in
the header.

• Eliminated a redundant warning message about the PCOUNT card when validating an ImageHDU header with
a PCOUNT card that is missing or has a value other than 0.

1.4.1 (2008-11-04)

Updates described in this release are only supported in the NUMPY version of pyfits.

The following enhancements were made:

• Enhanced the way import errors are reported to provide more information.

The following bugs were fixed:

• Corrected a bug that occurs when a card value is a string and contains a colon but is not a record-valued keyword
card.

• Corrected a bug where pyfits fails to properly handle a record-valued keyword card with values using exponential
notation and trailing blanks.

1.4 (2008-07-07)

Updates described in this release are only supported in the NUMPY version of pyfits.

The following enhancements were made:

• Added support for file objects and file like objects.

1.8. Other Information 97

PyFITS Documentation, Release 3.4

– All convenience functions and class methods that take a file name will now also accept a file object or file
like object. File like objects supported are StringIO and GzipFile objects. Other file like objects will work
only if they implement all of the standard file object methods.

– For the most part, file or file like objects may be either opened or closed at function call. An opened object
must be opened with the proper mode depending on the function or method called. Whenever possible, if
the object is opened before the method is called, it will remain open after the call. This will not be possible
when writing a HDUList that has been resized or when writing to a GzipFile object regardless of whether
it is resized. If the object is closed at the time of the function call, only the name from the object is used,
not the object itself. The pyfits code will extract the file name used by the object and use that to create an
underlying file object on which the function will be performed.

• Added support for record-valued keyword cards as introduced in the “FITS WCS proposal for representing a
more general distortion model”.

– Record-valued keyword cards are string-valued cards where the string is interpreted as a definition giving
a record field name, and its floating point value. In a FITS header they have the following syntax:

keyword= 'field-specifier: float'

where keyword is a standard eight-character FITS keyword name, float is the standard FITS ASCII repre-
sentation of a floating point number, and these are separated by a colon followed by a single blank.

The grammer for field-specifier is:

field-specifier:
field
field-specifier.field

field:
identifier
identifier.index

where identifier is a sequence of letters (upper or lower case), underscores, and digits of which the first
character must not be a digit, and index is a sequence of digits. No blank characters may occur in the
field-specifier. The index is provided primarily for defining array elements though it need not be used for
that purpose.

Multiple record-valued keywords of the same name but differing values may be present in a FITS header.
The field-specifier may be viewed as part of the keyword name.

Some examples follow:

DP1 = 'NAXIS: 2'
DP1 = 'AXIS.1: 1'
DP1 = 'AXIS.2: 2'
DP1 = 'NAUX: 2'
DP1 = 'AUX.1.COEFF.0: 0'
DP1 = 'AUX.1.POWER.0: 1'
DP1 = 'AUX.1.COEFF.1: 0.00048828125'
DP1 = 'AUX.1.POWER.1: 1'

– As with standard header cards, the value of a record-valued keyword card can be accessed using either
the index of the card in a HDU’s header or via the keyword name. When accessing using the keyword
name, the user may specify just the card keyword or the card keyword followed by a period followed by
the field-specifier. Note that while the card keyword is case insensitive, the field-specifier is not. Thus,
hdu[’abc.def’], hdu[’ABC.def’], or hdu[’aBc.def’] are all equivalent but hdu[’ABC.DEF’] is not.

– When accessed using the card index of the HDU’s header the value returned will be the entire string value
of the card. For example:

98 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

>>> print hdr[10]
NAXIS: 2
>>> print hdr[11]
AXIS.1: 1

– When accessed using the keyword name exclusive of the field-specifier, the entire string value of the header
card with the lowest index having that keyword name will be returned. For example:

>>> print hdr['DP1']
NAXIS: 2

– When accessing using the keyword name and the field-specifier, the value returned will be the floating
point value associated with the record-valued keyword card. For example:

>>> print hdr['DP1.NAXIS']
2.0

– Any attempt to access a non-existent record-valued keyword card value will cause an exception to be raised
(IndexError exception for index access or KeyError for keyword name access).

– Updating the value of a record-valued keyword card can also be accomplished using either index or key-
word name. For example:

>>> print hdr['DP1.NAXIS']
2.0
>>> hdr['DP1.NAXIS'] = 3.0
>>> print hdr['DP1.NAXIS']
3.0

– Adding a new record-valued keyword card to an existing header is accomplished using the Header.update()
method just like any other card. For example:

>>> hdr.update('DP1', 'AXIS.3: 1', 'a comment', after='DP1.AXIS.2')

– Deleting a record-valued keyword card from an existing header is accomplished using the standard list
deletion syntax just like any other card. For example:

>>> del hdr['DP1.AXIS.1']

– In addition to accessing record-valued keyword cards individually using a card index or keyword name,
cards can be accessed in groups using a set of special pattern matching keys. This access is made available
via the standard list indexing operator providing a keyword name string that contains one or more of the
special pattern matching keys. Instead of returning a value, a CardList object will be returned containing
shared instances of the Cards in the header that match the given keyword specification.

– There are three special pattern matching keys. The first key ‘*’ will match any string of zero or more
characters within the current level of the field-specifier. The second key ‘?’ will match a single character.
The third key ‘...’ must appear at the end of the keyword name string and will match all keywords that
match the preceding pattern down all levels of the field-specifier. All combinations of ?, *, and ... are
permitted (though ... is only permitted at the end). Some examples follow:

>>> cl=hdr['DP1.AXIS.*']
>>> print cl
DP1 = 'AXIS.1: 1'
DP1 = 'AXIS.2: 2'
>>> cl=hdr['DP1.*']
>>> print cl

1.8. Other Information 99

PyFITS Documentation, Release 3.4

DP1 = 'NAXIS: 2'
DP1 = 'NAUX: 2'
>>> cl=hdr['DP1.AUX...']
>>> print cl
DP1 = 'AUX.1.COEFF.0: 0'
DP1 = 'AUX.1.POWER.0: 1'
DP1 = 'AUX.1.COEFF.1: 0.00048828125'
DP1 = 'AUX.1.POWER.1: 1'
>>> cl=hdr['DP?.NAXIS']
>>> print cl
DP1 = 'NAXIS: 2'
DP2 = 'NAXIS: 2'
DP3 = 'NAXIS: 2'
>>> cl=hdr['DP1.A*S.*']
>>> print cl
DP1 = 'AXIS.1: 1'
DP1 = 'AXIS.2: 2'

– The use of the special pattern matching keys for adding or updating header cards in an existing header
is not allowed. However, the deletion of cards from the header using the special keys is allowed. For
example:

>>> del hdr['DP3.A*...']

• As noted above, accessing pyfits Header object using the special pattern matching keys will return a CardList
object. This CardList object can itself be searched in order to further refine the list of Cards. For example:

>>> cl=hdr['DP1...']
>>> print cl
DP1 = 'NAXIS: 2'
DP1 = 'AXIS.1: 1'
DP1 = 'AXIS.2: 2'
DP1 = 'NAUX: 2'
DP1 = 'AUX.1.COEFF.1: 0.000488'
DP1 = 'AUX.2.COEFF.2: 0.00097656'
>>> cl1=cl['*.*AUX...']
>>> print cl1
DP1 = 'NAUX: 2'
DP1 = 'AUX.1.COEFF.1: 0.000488'
DP1 = 'AUX.2.COEFF.2: 0.00097656'

– The CardList keys() method will allow the retrivial of all of the key values in the CardList. For example:

>>> cl=hdr['DP1.AXIS.*']
>>> print cl
DP1 = 'AXIS.1: 1'
DP1 = 'AXIS.2: 2'
>>> cl.keys()
['DP1.AXIS.1', 'DP1.AXIS.2']

– The CardList values() method will allow the retrivial of all of the values in the CardList. For example:

>>> cl=hdr['DP1.AXIS.*']
>>> print cl
DP1 = 'AXIS.1: 1'
DP1 = 'AXIS.2: 2'
>>> cl.values()
[1.0, 2.0]

100 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

– Individual cards can be retrieved from the list using standard list indexing. For example:

>>> cl=hdr['DP1.AXIS.*']
>>> c=cl[0]
>>> print c
DP1 = 'AXIS.1: 1'
>>> c=cl['DP1.AXIS.2']
>>> print c
DP1 = 'AXIS.2: 2'

– Individual card values can be retrieved from the list using the value attribute of the card. For example:

>>> cl=hdr['DP1.AXIS.*']
>>> cl[0].value
1.0

– The cards in the CardList are shared instances of the cards in the source header. Therefore, modifying a
card in the CardList also modifies it in the source header. However, making an addition or a deletion to the
CardList will not affect the source header. For example:

>>> hdr['DP1.AXIS.1']
1.0
>>> cl=hdr['DP1.AXIS.*']
>>> cl[0].value = 4.0
>>> hdr['DP1.AXIS.1']
4.0
>>> del cl[0]
>>> print cl['DP1.AXIS.1']
Traceback (most recent call last):
...
KeyError: "Keyword 'DP1.AXIS.1' not found."
>>> hdr['DP1.AXIS.1']
4.0

– A FITS header consists of card images. In pyfits each card image is manifested by a Card object. A pyfits
Header object contains a list of Card objects in the form of a CardList object. A record-valued keyword
card image is represented in pyfits by a RecordValuedKeywordCard object. This object inherits from a
Card object and has all of the methods and attributes of a Card object.

– A new RecordValuedKeywordCard object is created with the RecordValuedKeywordCard constructor:
RecordValuedKeywordCard(key, value, comment). The key and value arguments may be specified in two
ways. The key value may be given as the 8 character keyword only, in which case the value must be a
character string containing the field-specifier, a colon followed by a space, followed by the actual value.
The second option is to provide the key as a string containing the keyword and field-specifier, in which
case the value must be the actual floating point value. For example:

>>> c1 = pyfits.RecordValuedKeywordCard('DP1', 'NAXIS: 2', 'Number of
→˓variables')
>>> c2 = pyfits.RecordValuedKeywordCard('DP1.AXIS.1', 1.0, 'Axis number')

– RecordValuedKeywordCards have attributes .key, .field_specifier, .value, and .comment. Both .value and
.comment can be changed but not .key or .field_specifier. The constructor will extract the field-specifier
from the input key or value, whichever is appropriate. The .key attribute is the 8 character keyword.

– Just like standard Cards, a RecordValuedKeywordCard may be constructed from a string using the from-
string() method or verified using the verify() method. For example:

1.8. Other Information 101

PyFITS Documentation, Release 3.4

>>> c1 = pyfits.RecordValuedKeywordCard().fromstring(
"DP1 = 'NAXIS: 2' / Number of independent variables")

>>> c2 = pyfits.RecordValuedKeywordCard().fromstring(
"DP1 = 'AXIS.1: X' / Axis number")

>>> print c1; print c2
DP1 = 'NAXIS: 2' / Number of independent variables
DP1 = 'AXIS.1: X' / Axis number
>>> c2.verify()
Output verification result:
Card image is not FITS standard (unparsable value string).

– A standard card that meets the criteria of a RecordValuedKeywordCard may be turned into a RecordVal-
uedKeywordCard using the class method coerce. If the card object does not meet the required criteria then
the original card object is just returned.

>>> c1 = pyfits.Card('DP1','AUX: 1','comment')
>>> c2 = pyfits.RecordValuedKeywordCard.coerce(c1)
>>> print type(c2)
<'pyfits.NP_pyfits.RecordValuedKeywordCard'>

– Two other card creation methods are also available as RecordVauedKeywordCard class methods. These
are createCard() which will create the appropriate card object (Card or RecordValuedKeywordCard) given
input key, value, and comment, and createCardFromString which will create the appropriate card object
given an input string. These two methods are also available as convenience functions:

>>> c1 = pyfits.RecordValuedKeywordCard.createCard('DP1','AUX: 1','comment)

or

>>> c1 = pyfits.createCard('DP1','AUX: 1','comment)
>>> print type(c1)
<'pyfits.NP_pyfits.RecordValuedKeywordCard'>

>>> c1 = pyfits.RecordValuedKeywordCard.createCard('DP1','AUX 1','comment)

or

>>> c1 = pyfits.createCard('DP1','AUX 1','comment)
>>> print type(c1)
<'pyfits.NP_pyfits.Card'>

>>> c1 = pyfits.RecordValuedKeywordCard.createCardFromString \
("DP1 = 'AUX: 1.0' / comment")

or

>>> c1 = pyfits.createCardFromString("DP1 = 'AUX: 1.0' / comment")
>>> print type(c1)
<'pyfits.NP_pyfits.RecordValuedKeywordCard'>

The following bugs were fixed:

• Corrected a bug that occurs when writing a HDU out to a file. During the write, any Keyboard Interrupts are
trapped so that the write completes before the interrupt is handled. Unfortunately, the Keyboard Interrupt was
not properly reinstated after the write completed. This was fixed. (CNSHD711138)

102 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

• Corrected a bug when using ipython, where temporary files created with the tempFile.NamedTemporaryFile
method are not automatically removed. This can happen for instance when opening a Gzipped fits file or when
open a fits file over the internet. The files will now be removed. (CNSHD718307)

• Corrected a bug in the append convenience function’s call to the writeto convenience function. The classExten-
sions argument must be passed as a keyword argument.

• Corrected a bug that occurs when retrieving variable length character arrays from binary table HDUs (PA()
format) and using slicing to obtain rows of data containing variable length arrays. The code issued a TypeError
exception. The data can now be accessed with no exceptions. (CNSHD718749)

• Corrected a bug that occurs when retrieving data from a fits file opened in memory map mode when the file con-
tains multiple image extensions or ASCII table or binary table HDUs. The code issued a TypeError exception.
The data can now be accessed with no exceptions. (CNSHD707426)

• Corrected a bug that occurs when attempting to get a subset of data from a Binary Table HDU and then use
the data to create a new Binary Table HDU object. A TypeError exception was raised. The data can now be
subsetted and used to create a new HDU. (CNSHD723761)

• Corrected a bug that occurs when attempting to scale an Image HDU back to its original data type using the
_ImageBaseHDU.scale method. The code was not resetting the BITPIX header card back to the original data
type. This has been corrected.

• Changed the code to issue a KeyError exception instead of a NameError exception when accessing a non-existent
field in a table.

1.3 (2008-02-22)

Updates described in this release are only supported in the NUMPY version of pyfits.

The following enhancements were made:

• Provided support for a new extension to pyfits called stpyfits.

– The stpyfits module is a wrapper around pyfits. It provides all of the features and functions of pyfits along
with some STScI specific features. Currently, the only new feature supported by stpyfits is the ability to
read and write fits files that contain image data quality extensions with constant data value arrays. See
stpyfits [2] for more details on stpyfits.

• Added a new feature to allow trailing HDUs to be deleted from a fits file without actually reading the data from
the file.

– This supports a JWST requirement to delete a trailing HDU from a file whose primary Image HDU is too
large to be read on a 32 bit machine.

• Updated pyfits to use the warnings module to issue warnings. All warnings will still be issued to stdout, exactly
as they were before, however, you may now suppress warnings with the -Wignore command line option. For
example, to run a script that will ignore warnings use the following command line syntax:

python -Wignore yourscript.py

• Updated the open convenience function to allow the input of an already opened file object in place of a file name
when opening a fits file.

• Updated the writeto convenience function to allow it to accept the output_verify option.

– In this way, the user can use the argument output_verify=’fix’ to allow pyfits to correct any errors it
encounters in the provided header before writing the data to the file.

• Updated the verification code to provide additional detail with a VerifyError exception.

• Added the capability to create a binary table HDU directly from a numpy.ndarray. This may be done using either
the new_table convenience function or the BinTableHDU constructor.

1.8. Other Information 103

http://stsdas.stsci.edu/stsci_python_sphinxdocs_2.13/tools/stpyfits.html

PyFITS Documentation, Release 3.4

The following performance improvements were made:

• Modified the import logic to dramatically decrease the time it takes to import pyfits.

• Modified the code to provide performance improvements when copying and examining header cards.

The following bugs were fixed:

• Corrected a bug that occurs when reading the data from a fits file that includes BZERO/BSCALE scaling. When
the data is read in from the file, pyfits automatically scales the data using the BZERO/BSCALE values in the
header. In the previous release, pyfits created a 32 bit floating point array to hold the scaled data. This could
cause a problem when the value of BZERO is so large that the scaled value will not fit into the float 32. For this
release, when the input data is 32 bit integer, a 64 bit floating point array is used for the scaled data.

• Corrected a bug that caused an exception to be raised when attempting to scale image data using the Image-
HDU.scale method.

• Corrected a bug in the new_table convenience function that occurred when a binary table was created using a
ColDefs object as input and supplying an nrows argument for a number of rows that is greater than the number of
rows present in the input ColDefs object. The previous version of pyfits failed to allocate the necessary memory
for the additional rows.

• Corrected a bug in the new_table convenience function that caused an exception to be thrown when creating an
ASCII table.

• Corrected a bug in the new_table convenience function that will allow the input of a ColDefs object that was
read from a file as a binary table with a data value equal to None.

• Corrected a bug in the construction of ASCII tables from Column objects that are created with noncontinuous
start columns.

• Corrected bugs in a number of areas that would sometimes cause a failure to improperly raise an exception when
an error occurred.

• Corrected a bug where attempting to open a non-existent fits file on a windows platform using a drive letter in
the file specification caused a misleading IOError exception to be raised.

1.1 (2007-06-15)

• Modified to use either NUMPY or NUMARRAY.

• New file writing modes have been provided to allow streaming data to extensions without requiring the whole
output extension image in memory. See documentation on StreamingHDU.

• Improvements to minimize byteswapping and memory usage by byteswapping in place.

• Now supports ‘:’ characters in filenames.

• Handles keyboard interrupts during long operations.

• Preserves the byte order of the input image arrays.

1.0.1 (2006-03-24)

The changes to PyFITS were primarily to improve the docstrings and to reclassify some public functions and variables
as private. Readgeis and fitsdiff which were distributed with PyFITS in previous releases were moved to pytools. This
release of PyFITS is v1.0.1. The next release of PyFITS will support both numarray and numpy (and will be available
separately from stsci_python, as are all the python packages contained within stsci_python). An alpha release for
PyFITS numpy support will be made around the time of this stsci_python release.

• Updated docstrings for public functions.

• Made some previously public functions private.

104 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

1.0 (2005-11-01)

Major Changes since v0.9.6:

• Added support for the HEIRARCH convention

• Added support for iteration and slicing for HDU lists

• PyFITS now uses the standard setup.py installation script

• Add utility functions at the module level, they include:

– getheader

– getdata

– getval

– writeto

– append

– update

– info

Minor changes since v0.9.6:

• Fix a bug to make single-column ASCII table work.

• Fix a bug so a new table constructed from an existing table with X-formatted columns will work.

• Fix a problem in verifying HDUList right after the open statement.

• Verify that elements in an HDUList, besides the first one, are ExtensionHDU.

• Add output verification in methods flush() and close().

• Modify the design of the open() function to remove the output_verify argument.

• Remove the groups argument in GroupsHDU’s constructor.

• Redesign the column definition class to make its column components more accessible. Also to make it conducive
for higher level functionalities, e.g. combining two column definitions.

• Replace the Boolean class with the Python Boolean type. The old TRUE/FALSE will still work.

• Convert classes to the new style.

• Better format when printing card or card list.

• Add the optional argument clobber to all writeto() functions and methods.

• If adding a blank card, will not use existing blank card’s space.

PyFITS Version 1.0 REQUIRES Python 2.3 or later.

0.9.6 (2004-11-11)

Major changes since v0.9.3:

• Support for variable length array tables.

• Support for writing ASCII table extensions.

• Support for random groups, both reading and writing.

Some minor changes:

• Support for numbers with leading zeros in an ASCII table extension.

1.8. Other Information 105

PyFITS Documentation, Release 3.4

• Changed scaled columns’ data type from Float32 to Float64 to preserve precision.

• Made Column constructor more flexible in accepting format specification.

0.9.3 (2004-07-02)

Changes since v0.9.0:

• Lazy instanciation of full Headers/Cards for all HDU’s when the file is opened. At the open, only extracts vital
info (e.g. NAXIS’s) from the header parts. This change will speed up the performance if the user only needs to
access one extension in a multi-extension FITS file.

• Support the X format (bit flags) columns, both reading and writing, in a binary table. At the user interface,
they are converted to Boolean arrays for easy manipulation. For example, if the column’s TFORM is “11X”,
internally the data is stored in 2 bytes, but the user will see, at each row of this column, a Boolean array of 11
elements.

• Fix a bug such that when a table extension has no data, it will not try to scale the data when updating/writing
the HDU list.

0.9 (2004-04-27)

Changes since v0.8.0:

• Rewriting of the Card class to separate the parsing and verification of header cards

• Restructure the keyword indexing scheme which speed up certain applications (update large number of new
keywords and reading a header with larger numbers of cards) by a factor of 30 or more

• Change the default to be lenient FITS standard checking on input and strict FITS standard checking on output

• Support CONTINUE cards, both reading and writing

• Verification can now be performed at any of the HDUList, HDU, and Card levels

• Support (contiguous) subsection (attribute .section) of images to reduce memory usage for large images

0.8.0 (2003-08-19)

NOTE: This version will only work with numarray Version 0.6. In addition, earlier versions of PyFITS will not work
with numarray 0.6. Therefore, both must be updated simultaneously.

Changes since 0.7.6:

• Compatible with numarray 0.6/records 2.0

• For binary tables, now it is possible to update the original array if a scaled field is updated.

• Support of complex columns

• Modify the __getitem__ method in FITS_rec. In order to make sure the scaled quantities are also viewing ths
same data as the original FITS_rec, all fields need to be “touched” when __getitem__ is called.

• Add a new attribute mmobject for HDUList, and close the memmap object when close HDUList object. Earlier
version does not close memmap object and can cause memory lockup.

• Enable ‘update’ as a legitimate memmap mode.

• Do not print message when closing an HDUList object which is not created from reading a FITS file. Such
message is confusing.

• remove the internal attribute “closed” and related method (__getattr__ in HDUList). It is redundant.

0.7.6 (2002-11-22)

NOTE: This version will only work with numarray Version 0.4.

106 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

Changes since 0.7.5:

• Change x*=n to numarray.multiply(x, n, x) where n is a floating number, in order to make pyfits to work under
Python 2.2. (2 occurrences)

• Modify the “update” method in the Header class to use the “fixed-format” card even if the card already exists.
This is to avoid the mis-alignment as shown below:

After running drizzle on ACS images it creates a CD matrix whose elements have very many digits, e.g.:

CD1_1 = 1.1187596304411E-05 / partial of first axis coordinate w.r.t. x CD1_2 = -
8.502767249350019E-06 / partial of first axis coordinate w.r.t. y

with pyfits, an “update” on these header items and write in new values which has fewer digits, e.g.:

CD1_1 = 1.0963011E-05 / partial of first axis coordinate w.r.t. x CD1_2 = -8.527229E-06 / partial of
first axis coordinate w.r.t. y

• Change some internal variables to make their appearance more consistent:

old name new name

__octalRegex _octalRegex __readblock() _readblock() __formatter() _formatter(). __value_RE
_value_RE __numr _numr __comment_RE _comment_RE __keywd_RE _keywd_RE __num-
ber_RE _number_RE. tmpName() _tmpName() dimShape _dimShape ErrList _ErrList

• Move up the module description. Move the copywright statement to the bottom and assign to the variable
__credits__.

• change the following line:

self.__dict__ = input.__dict__

to

self.__setstate__(input.__getstate__())

in order for pyfits to run under numarray 0.4.

• edit _readblock to add the (optional) firstblock argument and raise IOError if the first 8 characters in the first
block is not ‘SIMPLE ‘ or ‘XTENSION’. Edit the function open to check for IOError to skip the last null filled
block(s). Edit readHDU to add the firstblock argument.

0.7.5 (2002-08-16)

Changes since v0.7.3:

• Memory mapping now works for readonly mode, both for images and binary tables.

Usage: pyfits.open(‘filename’, memmap=1)

• Edit the field method in FITS_rec class to make the column scaling for numbers use less temporary memory.
(does not work under 2.2, due to Python “bug” of array *=)

• Delete bscale/bzero in the ImageBaseHDU constructor.

• Update bitpix in BaseImageHDU.__getattr__ after deleting bscale/bzero. (bug fix)

• In BaseImageHDU.__getattr__ point self.data to raw_data if float and if not memmap. (bug fix).

• Change the function get_tbdata() to private: _get_tbdata().

1.8. Other Information 107

PyFITS Documentation, Release 3.4

0.7.3 (2002-07-12)

Changes since v0.7.2:

• It will scale all integer image data to Float32, if BSCALE/BZERO != 1/0. It will also expunge the
BSCALE/BZERO keywords.

• Add the scale() method for ImageBaseHDU, so data can be scaled just before being written to the file. It has the
following arguments:

type: destination data type (string), e.g. Int32, Float32, UInt8, etc.

option: scaling scheme. if ‘old’, use the old BSCALE/BZERO values. if ‘minmax’, use the data range to fit into
the full range of specified integer type. Float destination data type will not be scaled for this option.

bscale/bzero: user specifiable BSCALE/BZERO values. They overwrite the “option”.

• Deal with data area resizing in ‘update’ mode.

• Make the data scaling (both input and output) faster and use less memory.

• Bug fix to make column name change takes effect for field.

• Bug fix to avoid exception if the key is not present in the header already. This affects (fixes) add_history(),
add_comment(), and add_blank().

• Bug fix in __getattr__() in Card class. The change made in 0.7.2 to rstrip the comment must be string type to
avoid exception.

0.7.2.1 (2002-06-25)

A couple of bugs were addressed in this version.

• Fix a bug in _add_commentary(). Due to a change in index_of() during version 0.6.5.5, _add_commentary
needs to be modified to avoid exception if the key is not present in the header already. This affects (fixes)
add_history(), add_comment(), and add_blank().

• Fix a bug in __getattr__() in Card class. The change made in 0.7.2 to rstrip the comment must be string type to
avoid exception.

0.7.2 (2002-06-19)

The two major improvements from Version 0.6.2 are:

• support reading tables with “scaled” columns (e.g. tscal/tzero, Boolean, and ASCII tables)

• a prototype output verification.

This version of PyFITS requires numarray version 0.3.4.

Other changes include:

• Implement the new HDU hierarchy proposed earlier this year. This in turn reduces some of the redundant
methods common to several HDU classes.

• Add 3 new methods to the Header class: add_history, add_comment, and add_blank.

• The table attributes _columns are now .columns and the attributes in ColDefs are now all without the under-
scores. So, a user can get a list of column names by: hdu.columns.names.

• The “fill” argument in the new_table method now has a new meaning:
 If set to true (=1), it will fill the
entire new table with zeros/blanks. Otherwise (=0), just the extra rows/cells are filled with zeros/blanks. Fill
values other than zero/blank are now not possible.

• Add the argument output_verify to the open method and writeto method. Not in the flush or close methods yet,
due to possible complication.

108 Chapter 1. Introduction

PyFITS Documentation, Release 3.4

• A new copy method for tables, the copy is totally independent from the table it copies from.

• The tostring() call in writeHDUdata takes up extra space to store the string object. Use tofile() instead, to save
space.

• Make changes from _byteswap to _byteorder, following corresponding changes in numarray and recarray.

• Insert(update) EXTEND in PrimaryHDU only when header is None.

• Strip the trailing blanks for the comment value of a card.

• Add seek(0) right after the __buildin__.open(0), because for the ‘ab+’ mode, the pointer is at the end after open
in Linux, but it is at the beginning in Solaris.

• Add checking of data against header, update header keywords (NAXIS’s, BITPIX) when they don’t agree with
the data.

• change version to __version__.

There are also many other minor internal bug fixes and technical changes.

0.6.2 (2002-02-12)

This version requires numarray version 0.2.

Things not yet supported but are part of future development:

• Verification and/or correction of FITS objects being written to disk so that they are legal FITS. This is being
added now and should be available in about a month. Currently, one may construct FITS headers that are
inconsistent with the data and write such FITS objects to disk. Future versions will provide options to either a)
correct discrepancies and warn, b) correct discrepancies silently, c) throw a Python exception, or d) write illegal
FITS (for test purposes!).

• Support for ascii tables or random groups format. Support for ASCII tables will be done soon (~1 month). When
random group support is added is uncertain.

• Support for memory mapping FITS data (to reduce memory demands). We expect to provide this capability in
about 3 months.

• Support for columns in binary tables having scaled values (e.g. BSCALE or BZERO) or boolean values. Cur-
rently booleans are stored as Int8 arrays and users must explicitly convert them into a boolean array. Likewise,
scaled columns must be copied with scaling and offset by testing for those attributes explicitly. Future versions
will produce such copies automatically.

• Support for tables with TNULL values. This awaits an enhancement to numarray to support mask arrays
(planned). (At least a couple of months off).

1.8.2 PyFITS Developers Guide

This “developers guide” will be brief, as PyFITS will, in the near future, be deprecated in favor of Astropy (which
includes a port of PyFITS now dubbed astropy.io.fits. As such, it should be sufficient for any developers
wishing to contribute to PyFITS to look at the developer documentation for Astropy, as much of it applies equally
well. In particular, please look at the Astropy Coding Guidelines and the Documentation Guidelines before getting
started with any major contributions to PyFITS (don’t worry if you don’t immediately absorb everything in those
guidelines–it’s just good to be aware that they exist and have a rough understanding of how to approach the source
code).

1.8. Other Information 109

http://astropy.readthedocs.org/en/v0.3/development/codeguide.html
http://astropy.readthedocs.org/en/v0.3/development/docguide.html

PyFITS Documentation, Release 3.4

Getting the source code

PyFITS was originally developed in SVN, but now most development has moved to Git, primarily for ease of syncing
changes to Astropy. That said, the SVN repository is still maintained for legacy purposes. PyFITS’ lead maintainer at
STScI will handle synchronizing the Git and SVN repositories, but the steps for configuring git-svn are documented
below for posterity. Outside users wishing to contribute to the source code should start with Astropy’s guide to
Contributing to Astropy.

The official PyFITS GitHub page is at: https://github.com/spacetelescope/pyfits

The best way to contribute to PyFITS is to create an account on GitHub, fork your own copy of the PyFITS repository,
and then make your changes in your personal fork and make a pull request when they are ready to share. The entire
process is described in Astropy’s Workflow for Developers document. That documention was written for Astropy, but
applies all the same to PyFITS. Just replace any instance of astropy/astropy.git with spacetelescope/
PyFITS.git and so on. Use of virtualenv and ./setup.py develop are strongly encouraged for developing
on PyFITS–use of this tools is also described in the aforementioned Workflow for Developers document.

Synchronizing with SVN

This section is primarily intended for developers at STScI who have commit access to the PyFITS SVN repository
(https://aeon.stsci.edu/ssb/svn/pyfits/). The PyFITS Git and SVN repositories are synced using the git-svn command.
git-svn can be tricky to install as it requires the Perl bindings for SVN, as well as SVN itself and of course Git. The
easiest way to get git-svn is to ask a system administrator to install it from the OS packaging system.

Most guides for setting up git-svn start out with either the git svn init command or git svn clone. But
because the work of synchronizing the Git and SVN repositories up until this point has already been done, a faster,
though seemingly less straightforward approach, is to just clone the GitHub reposiotry and add the git-svn metadata
manually:

1. Clone the main spacetelescope GitHub repository:

$ git clone git@github.com:spacetelescope/PyFITS.git

2. cd into the repository and open .git/config in an editor and add the following:

[svn]
authorsfile = .authors

[svn-remote "svn"]
url = https://aeon.stsci.edu/ssb/svn/pyfits/
fetch = trunk:refs/remotes/trunk
branches = branches/{3.2-stable,3.1-stable,3.0-stable}:refs/remotes/branches/*

[branch "3.0-stable"]
remote = .
merge = refs/remotes/branches/3.0-stable

[branch "3.1-stable"]
remote = .
merge = refs/remotes/branches/3.1-stable

[branch "3.2-stable"]
remote = .
merge = refs/remotes/branches/3.1-stable

Repeat the [branch "X.Y-stable"] section following the above pattern for any actively maintained re-
lease branches (see the “Maintenance” section below for more details on release branches). Likewise add each
branch to the branches = option under the [svn-remote "svn"] section (you may put a * here to get
all branches. It is also possible to sync all SVN tags. But as most of those branches are defunct it is probably
not desirable to sync them all (it is a very time consuming operation).

110 Chapter 1. Introduction

http://astropy.readthedocs.org/en/v0.3/development/workflow/index.html
https://github.com/spacetelescope/pyfits
http://astropy.readthedocs.org/en/v0.3/development/workflow/development_workflow.html
https://aeon.stsci.edu/ssb/svn/pyfits/

PyFITS Documentation, Release 3.4

Warning: Do not forget to set the [svn]/authorsfile = .authors option, or the repository will
get severely confused when trying to sync SVN changes with the git repository. The .authors file maps SVN
usernames to developers’ name/e-mail address to use in git commits. If you intend to synchronize changes
you make with SVN, make sure to add yourself to the .authors file. The format should be self-explanatory.

3. Put the hash of the latest revision of the upstream master branch in refs file for trunk, so git-svn knows where to
start synchronizing with SVN’s trunk:

$ git rev-parse origin/master > .git/refs/remotes/trunk

Likewise for each stable branch do, for example:

$ mkdir .git/refs/remotes/branches/
$ git rev-parse origin/3.1-stable > .git/refs/remotes/branches/3.1-stable

4. Finally, do:

$ git svn fetch

to synchronize any new revisions in the SVN repository.

Warning: This fetch operation can still take a pretty long time, especially on the branches. It may appear
to hang at some points–just be patient and leave it running. I’ve yet to find a way to speed it up any further.

Syncing new changes to SVN

The command for committing new changes in git to the SVN repository is git svn dcommit. This command
goes through all commits on the current branch that have not yet been committed to SVN and does so.

Whenever you are about to push new changes on the master branch to the remote remote repository on GitHub it is
best to first cross-commit those changes to SVN. This is because git-svn rewrites the commit messages on all your
commits to include a reference to the SVN revision that was created from that commit. So if you push first, and then
run git svn dcommit you will now have different commits (as far as their SHA has is concerned) on your local
repository from what you just pushed to the remote repository. The simplest way to resolve this, when it happens, is
to git push --force. This will override the old history with the new history that includes the SVN revisions in
the commit messages.

It’s easier, however, to remember to always run git svn dcommit before doing a git push.

Maintenance

At any given time there are two to three lines of development on PyFITS (possibly more if some critical bug is
discovered that needs to be backported to older release lines, though such situations are rare). Typically there is the
mainline development in the ‘master’ branch, and at least one branch named after the last minor release. For example,
if the version being developed in the mainline is ‘3.2.0’ there will be, at a minimum, a ‘3.1-stable’ branch into which
bug fixes can be ported. There may also be a ‘3.0-stable’ branch and so on so long as new bugfix releases are being
made with ‘3.0.z’ versions.

Bug fix releases should never add new public APIs or change existing ones–they should only correct bugs or major
oversights. “Minor” releases, where the second number in the version is increased, may introduce new APIs and
may deprecate old interfaces (see the @deprecated decorated in pyfits.util, but may not otherwise remove
or change (non-buggy) behavior of old interfaces without backwards compatibility with the previous versions in the

1.8. Other Information 111

PyFITS Documentation, Release 3.4

same major version line. Major releases may break backwards compatibility so long as warning has been given through
@deprecated markers and documentation that those interfaces will break in future versions.

In general all development should be done in the ‘master’ branch, including development of new features and bug fixes
(though temporary branches should certainly be used aggressively for any individual feature or fix being developed,
they should be merged back into ‘master’ when ready).

The only exception to this rule is when developing a bug fix that only applies to an older release line. For example it’s
possible for a bug to exist in version ‘3.1.1’ that no longer exists in the ‘master’ branch (perhaps because it pertains to
an older API), but that still exists in the ‘3.1-stable’ branch. Then that bug should be fixed in the ‘3.1-stable’ branch to
be included in the version ‘3.1.2’ bugfix release (assuming a bugfix release is planned). If that bug pertains to any older
release branches (such as ‘3.0-stable’) it should also be backported to those branches by way of git cherry-pick.

Releasing

Creating a PyFITS release consists 3 main stages each with several sub-steps according to this rough outline:

1. Pre-release

(a) Set the version string for the release in the setup.cfg file

(b) Set the release date in the changelog (CHANGES.txt)

(c) Test that README.txt and CHANGES.txt can be correctly parsed as RestructuredText.

(d) Commit these preparations to the repository, creating a specific commit to tag as the “release”

2. Release

(a) Create a tag from the commit created in the pre-release stage

(b) Register the new release on PyPI

(c) Build a source distribution of the release and test that it is installable (specifically, installable with pip) and
that all the tests pass from an installed version

3. Post-release

(a) Upload the source distribution to PyPI

(b) Set the version string for the “next” release in the setup.cfg file (the choice of the next version is based on
inference, and does not mean the “next” version can’t be changed later if desired)

(c) Create a new section in CHANGES.txt for the next release (using the same “next” version as in part b)

(d) Commit these “post-release” changes to the repository

(e) Push the release commits and the new tag to the remote repository (GitHub)

(f) Update the PyFITS website to reflect the new version

(g) Build Windows installers for all supported Python versions and upload them to PyPI

Most of these steps are automated by using zest.releaser along with some hooks designed specifically for PyFITS that
automate actions such as updating the PyFITS website.

Prerequisites for performing a release

1. Because PyFITS is released (registered and uploaded to) on PyPI it is necessary to create an account on PyPI
and get assigned a “Maintainer” role for the PyFITS package. Currently the package owners–the only two
people who can add additional Maintainers are Erik Bray <embray@stsci.edu> and Nicolas Barbey <nico-
las.a.barbey@gmail.com>. (It remains a “todo” item to add a shared “space telescope” account. In the mean-
time, should both of those people be hit by a bus simultaneously the PyPI administrators will be reasonable if
the situation is explained to them with proper documentation).

112 Chapter 1. Introduction

https://pypi.python.org/pypi/zest.releaser
mailto:embray@stsci.edu
mailto:nicolas.a.barbey@gmail.com
mailto:nicolas.a.barbey@gmail.com

PyFITS Documentation, Release 3.4

Once your PyPI account is set up, it is necessary to add your PyPI credentials (username and password) to the
.pypirc file in your home directory with the following format:

[server-login]
username: <your PyPI username>
password: <your PyPI password>

Unfortunately some the setup.py commands for interacting with PyPI are broken in that they don’t allow
interactive password entry. Creating the .pypirc file is currently the most reliable way to make authentication
with PyPI “just work”. Be sure to chmod 600 this file.

2. Generate a signing key–all PyFITS tags are now cryptographically signed when creating the tag (using git
tag -s). The Astropy release process page documents how to set this up.

3. Also make sure to have an account on readthedocs.org with administrative access to the PyFITS project on Read
the Docs: https://readthedocs.org/projects/pyfits/ This hosts documentation for all (recent) versions of PyFITS.
(TODO: Here also we need a “space telescope” account with administrative rights to all STScI projects that use
RtD.)

4. It’s best to do the release in a relatively “clean” Python environment, so make sure you have virtualenv installed
and that you’ve had some practice in using it.

5. Make sure you have Numpy and nose installed and are able to run the PyFITS tests successfully without any
errors. Even better if you can do this with tox.

6. Make sure that at least someone can make the Windows builds. This requires a Windows machine with at least
Windows XP, Mingw32 with msys, and all of the Python development packages. Python versions 2.6, 2.7, 3.3,
and 3.4 should be installed with the installers from python.org, as well as a recent version of Numpy for each of
those Python versions (currently Numpy 1.6.x), as well as Git. (TODO: More detailed instructions for setting
up a Windows development environment.)

7. PyFITS also has a page on STScI’s website: http://www.stsci.edu/institute/software_hardware/pyfits. This is
normally the first hit when Googling ‘pyfits’ so it’s important to keep up to date. At a minimum each release
should update the front page to mention the most recent release, the Release Notes page with an HTML rendering
of the most recent changelog, and the download page with links to all the current versions. See the exisint site
for examples. The STScI website has both a test server and a production server. It’s difficult for content creators
to get direct access to the production server, but at least make sure you have access to the test server on port
8072, and that IT has given you permission to write to the PyFITS section of the site.

Part of the PyFITS automated release script attempts to update the PyFITS website (on the test server) as part of
the standard release process. So it’s important to test your access to the site and ability to make edits. If for any
reason the automatic update fails (e.g. your authentication fails) it is still possible to update the site manually.

Once the updates are made it’s necessary to have IT push the updates to the production server. As of writing the
best person to ask is George Smyth– asking him directly is the fastest way to get it done, though if you send a
ticket to IT it will be handled eventually.

8. Triage issues is milestones in the PyFITS bug tracker(s). Currently this includes the Trac site: https://aeon.stsci.
edu/ssb/trac/pyfits/roadmap and the GitHub site: https://github.com/spacetelescope/PyFITS/issues/milestones

No new tickets are being added in Trac, so after all open tickets in the Trac site have been addressed, milestones
will only need to be managed in GitHub.

First create a new milestone for the version after the version to be released. If a major/minor release is being
made, make the milestone for the next bugfix release in that series as well. For example if releasing a bugfix
release like 3.0.1, create a milestone for 3.0.2. If releasing 3.1.0, create milestones for 3.2.0 and 3.2.1.

If the milestone for the to be released version still has any issues remaining in it, such as bugs that were not
fixed, move them to the next appriopriate milestone if they will not be addressed before the release (or close

1.8. Other Information 113

http://astropy.readthedocs.org/en/v0.3/development/releasing.html
https://readthedocs.org/projects/pyfits/
https://pypi.python.org/pypi/virtualenv
http://www.stsci.edu/institute/software_hardware/pyfits
https://aeon.stsci.edu/ssb/trac/pyfits/roadmap
https://aeon.stsci.edu/ssb/trac/pyfits/roadmap
https://github.com/spacetelescope/PyFITS/issues/milestones

PyFITS Documentation, Release 3.4

issues that are no longer applicable). Ensure that the milestone for the to be released version has no open issues
remaining in it.

Release procedure

(These instructions are adapted from the Astropy release process which itself was adapted from PyFITS’ release
process–the former just got written down first.)

1. In a directory outside the pyfits repository, create an activate a virtualenv in which to do the release (it’s okay to
use --system-site-packages for dependencies like Numpy):

$ virtualenv --system-site-packages --distribute pyfits-release
$ source pyfits-release/bin/activate

2. Obtain a clean version of the PyFITS repository. That is, one where you don’t have any intermediate build
files. It is best to use a fresh git clone from the main repository on GitHub without any of the git-svn
configuration. This is because the git-svn support in zest.releaser does not handle tagging in branches very well
yet.

3. Use git checkout to switch to the appropriate branch from which to do the release. For a new major or
minor release (such as 3.0.0 or 3.1.0) this should be the ‘master’ branch. When making a bugfix release it is
necessary to switch to the appropriate bugfix branch (e.g. git checkout 3.1-stable to release 3.1.2 up
from 3.1.1).

4. Install zest.releaser into the virtualenv; use --upgrade --force to ensure that the latest version is
installed in the virtualenv (if you’re running a csh variant make sure to run rehash afterwards too):

$ pip install zest.releaser --upgrade --force

5. Install stsci.distutils which includes some additional releaser hooks that are useful:

$ pip install stsci.distutils --upgrade --force

6. Ensure that any lingering changes to the code have been committed, then start the release by running:

$ fullrelease

7. You will be asked to enter the version to be released. Press enter to accept the default (which will normally be
correct) or enter a specific version string. A diff will then be shown of CHANGES.txt and setup.cfg showing
that a release date has been added to the changelog, and that the version has been updated in setup.cfg. Enter
‘Y’ when asked to commit these changes.

8. You will then be shown the command that will be run to tag the release. Enter ‘Y’ to confirm and run the
command.

9. When asked “Check out the tag (for tweaks or pypi/distutils server upload)” enter ‘Y’: This feature is used when
uploading the source distribution to our local package index. When asked to ‘Register and upload’ to PyPI enter
‘N’. We will do this manually later in the process once we’ve tested the release out first. If asked to add the
package to the “STScI package index” enter ‘N’–this package index is no longer being maintained.

10. You will be asked to enter a new development version. Normally the next logical version will be selected–press
enter to accept the default, or enter a specific version string. Do not add ”.dev” to the version, as this will
be appended automatically (ignore the message that says ”.dev0 will be appended”–it will actually be ”.dev”
without the 0). For example, if the just-released version was “3.1.0” the default next version will be “3.1.1”. If
we want the next version to be, say “3.2.0” then that must be entered manually.

11. You will be shown a diff of CHANGES.txt showing that a new section has been added for the new development
version, and showing that the version has been updated in setup.py. Enter ‘Y’ to commit these changes.

114 Chapter 1. Introduction

http://astropy.readthedocs.org/en/v0.3/development/releasing.html

PyFITS Documentation, Release 3.4

12. When asked to push the changes to a remote repository, enter ‘N’. We want to test the release out before pushing
changes to the remote repository or registering in PyPI.

13. When asked to update the PyFITS homepage enter ‘Y’. The enter the name of the previous version (in the same
MAJOR.MINOR.x branch) and then the name of the just released version. The defaults will usually be correct.
When asked, enter the username and password for your Zope login. As of writing this is not necessarily the
same as your Exchange password. If the update succeeeds make sure to e-mail IT and ask them to push the
updated pages from the test site to the production site.

This should complete the portion of the process that’s automated at this point (though future versions will
automate these steps as well, after a few needed features are added to zest.releaser).

14. Check out the tag of the released version. For example:

$ git checkout v3.1.0

15. Create the source distribution by doing:

$ python setup.py sdist

16. Now, outside the repository create and activate another new virtualenv for testing the release:

$ virtualenv --system-site-packages --distribute pyfits-release-test
$ source pyfits-release-test/bin/activate

17. Use pip to install the source distribution built in step 13 into the new test virtualenv. This will look something
like:

$ pip install PyFITS/dist/pyfits-3.2.0.tar.gz

where the path should be to the sole .tar.gz file in the dist/ directory under your repository clone.

18. Try running the tests in the installed PyFITS:

$ pip install nose --force --upgrade
$ nosetests pyfits

If any of the tests fail abort the process and start over. Undo the previous two git commits (the one tagged as the
release, and the one where you bumped to the next dev version):

$ git reset --hard HEAD^^

Also delete the newly created tag:

$ git tag -d v3.2.0

Resolve the test failure, commit any new fixes, and start the release procedure over again (it’s rare for this to
be an issue if the tests passed before starting the release, but it is possible–the most likely case being if some
file that should be installed is either not getting installed or is not included in the source distribution in the first
place).

19. Assuming the test installation worked, change directories back into the repository and push the new tag/release
to the main repository on GitHub:

$ git push --tags

This initial step is necessary since the tag was made off of a pure git commit. But when we synchronize with
SVN the commit history will change so we need to force an additional push to the GitHub repository:

1.8. Other Information 115

PyFITS Documentation, Release 3.4

$ git svn dcommit
$ git push --force

Then register the release on PyPI with:

$ python setup.py register

Upload the source distribution to PyPI; this is preceded by re-running the sdist command, which is necessary
for the upload command to know which distribution to upload:

$ python setup.py sdist upload

After registering on PyPI go to the URL:

https://pypi.python.org/pypi?%3Aaction=pkg_edit&name=pyfits

and mark any previous releases superceded by this release as hidden via the web UI. Don’t check “Auto-hide
old releases” as we want to support discovery of bugfix releases of older versions.

20. When releasing a new major or minor version, create a bugfix branch for that version. Starting from the tagged
changset, just checkout a new branch and push it to the remote server. For example, after releasing version 3.2.0,
do:

$ git checkout -b 3.2-stable

Then edit the setup.cfg so that the version is '3.2.1.dev', and commit that change. Then, do:

$ git push origin +3.2-stable

Note: You may need to replace origin here with upstream or whatever remote name you use for the main
PyFITS repository on GitHub.

The purpose of this branch is for creating bugfix releases like “3.2.1” and “3.2.2”, while allowing development
of new features to continue in the master branch. Only changesets that fix bugs without making significant API
changes should be merged to the bugfix branches.

21. On the other hand, if a bugfix release was made, the CHANGES.txt file will only be updated in the stable
branch; the master branch also needs to be updated so that the release is reflected in its copy of CHANGES.txt.
Just run:

$ git checkout master

Say 3.2.1 was just released. Use git log -p to find the commit that updated the changelog with the release
date in the stable branch, like:

$ git log -p 3.2-stable

Copy the commit hash, and then cherry-pick it into master:

$ git cherry-pick <sha1 hash>

You will likely have to resolve a merge conflict, but just make sure that the section heading for the just released
version is updated so that “(unreleased)” is replaced with today’s date. Also ensure that a new section is added
for the next bugfix release in that release series.

22. Log into the Read the Docs control panel for PyFITS at https://readthedocs.org/projects/pyfits/. Click on “Ad-
min” and then “Versions”. Find the just-released version (it might not appear for a few minutes) and click the

116 Chapter 1. Introduction

https://pypi.python.org/pypi?%3Aaction=pkg_edit&name=pyfits
https://readthedocs.org/projects/pyfits/

PyFITS Documentation, Release 3.4

check mark next to “Active” under that version. Leave the dropdown list on “Public”, then scroll to the bottom
of the page and click “Submit”. If this is the release with the highest version number, make sure to set it as the
“default” version as soon as the build finishes.

Note: When you first activate the new version in Read the Docs, it immediately displays a “Build Failed”
message for the build of the new docs. This is a bug–all it really means is that those docs have never been built
yet. Give it a few minutes before checking that the build succeeded. Then you can set that version as the default
if needed.

23. We also mirror the most recent documentation at pythonhosted.org/pyfits (formerly packages.python.org).

First it is necessary to build the docs manually. Make sure all the dependencies are satisfied by running:

$ pip install sphinx

Then change directories into the docs/ directory and install the additional requirements for the docs:

$ cd docs
$ pip install -r requirements.txt

Then make the HTML docs:

make html

Now change directories back to the source root and upload:

$ cd ..
$ python setup.py upload_docs

24. Mark the milestone of the released version as closed/completed in the PyFITS bug tracker(s). If asked for a
timestamp (as Trac does) use the timestamp of the git tag made for the release.

25. Build and upload the Windows installers:

(a) Launch a MinGW shell.

(b) Just as before make sure you have a pypirc file in your home directory with your authentication info
for PyPI. On Windows the file should be called just pypirc without the leading . because having some
consistency would make this too easy :)

(c) Do a git clone of the repository or, if you already have a clone of the repository do git fetch
--tags to get the new tags.

(d) Check out the tag for the just released version. For example:

$ git checkout v3.2.0

(ignore the message about being in “detached HEAD” state).

(e) For each Python version installed, build with the mingw32 compiler, create the binary installer, and upload
it. It’s best to use the full path to each Python version to avoid ambiguity. It is also best to clean the
repository between builds for each version. For example:

$ /C/Python25/python setup.py build -c mingw32 bdist_wininst upload
< ... builds and uploads successfully ... >
$ git clean -dfx
$ /C/Python26/python setup.py build -c mingw32 bdist_wininst upload
< ... builds and puloads successfully ... >
$ git clean -dfx
$ < ... and so on, for all currently supported Python versions ... >

1.8. Other Information 117

PyFITS Documentation, Release 3.4

1.9 Reference/API

A module for reading and writing FITS files and manipulating their contents.

A module for reading and writing Flexible Image Transport System (FITS) files. This file format was endorsed
by the International Astronomical Union in 1999 and mandated by NASA as the standard format for storing high
energy astrophysics data. For details of the FITS standard, see the NASA/Science Office of Standards and Technology
publication, NOST 100-2.0.

For detailed examples of usage, see the PyFITS User’s Manual.

1.9.1 File Handling and Convenience Functions

open()

pyfits.open(name, mode=’readonly’, memmap=None, save_backup=False, **kwargs)
Factory function to open a FITS file and return an HDUList object.

Parameters
name : file path, file object or file-like object

File to be opened.

mode : str, optional

Open mode, ‘readonly’ (default), ‘update’, ‘append’, ‘denywrite’, or ‘ostream’.

If name is a file object that is already opened, mode must match the mode the file was
opened with, readonly (rb), update (rb+), append (ab+), ostream (w), denywrite (rb)).

memmap : bool, optional

Is memory mapping to be used?

save_backup : bool, optional

If the file was opened in update or append mode, this ensures that a backup of the
original file is saved before any changes are flushed. The backup has the same name as
the original file with ”.bak” appended. If “file.bak” already exists then “file.bak.1” is
used, and so on.

kwargs : dict, optional

additional optional keyword arguments, possible values are:

• uint : bool

Interpret signed integer data where BZERO is the central value and BSCALE ==
1 as unsigned integer data. For example, int16 data with BZERO = 32768
and BSCALE = 1would be treated as uint16 data. This is enabled by default
so that the pseudo-unsigned integer convention is assumed.

Note, for backward compatibility, the kwarg uint16 may be used instead. The
kwarg was renamed when support was added for integers of any size.

• ignore_missing_end : bool

Do not issue an exception when opening a file that is missing an END card in the
last header.

• checksum : bool, str

118 Chapter 1. Introduction

http://stsdas.stsci.edu/download/wikidocs/The_PyFITS_Handbook.pdf

PyFITS Documentation, Release 3.4

If True, verifies that both DATASUM and CHECKSUM card values (when present
in the HDU header) match the header and data of all HDU’s in the file. Up-
dates to a file that already has a checksum will preserve and update the existing
checksums unless this argument is given a value of ‘remove’, in which case the
CHECKSUM and DATASUM values are not checked, and are removed when
saving changes to the file.

• disable_image_compression : bool

If True, treats compressed image HDU’s like normal binary table HDU’s.

• do_not_scale_image_data : bool

If True, image data is not scaled using BSCALE/BZERO values when read.

• ignore_blank
[bool] If True, the BLANK keyword is ignored if present.

• scale_back : bool

If True, when saving changes to a file that contained scaled image data, re-
store the data to the original type and reapply the original BSCALE/BZERO
values. This could lead to loss of accuracy if scaling back to integer values after
performing floating point operations on the data.

Returns
hdulist : an HDUList object

HDUList containing all of the header data units in the file.

writeto()

pyfits.writeto(filename, data, header=None, output_verify=’exception’, clobber=False, check-
sum=False)

Create a new FITS file using the supplied data/header.

Parameters
filename : file path, file object, or file like object

File to write to. If opened, must be opened in a writeable binary mode such as ‘wb’ or
‘ab+’.

data : array, record array, or groups data object

data to write to the new file

header : Header object, optional

the header associated with data. If None, a header of the appropriate type is created
for the supplied data. This argument is optional.

output_verify : str

Output verification option. Must be one of "fix", "silentfix", "ignore",
"warn", or "exception". May also be any combination of "fix"
or "silentfix" with "+ignore", +warn, or +exception" (e.g.
``"fix+warn"). See Verification options for more info.

clobber : bool, optional

If True, and if filename already exists, it will overwrite the file. Default is False.

checksum : bool, optional

1.9. Reference/API 119

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False

PyFITS Documentation, Release 3.4

If True, adds both DATASUM and CHECKSUM cards to the headers of all HDU’s written
to the file.

info()

pyfits.info(filename, output=None, **kwargs)
Print the summary information on a FITS file.

This includes the name, type, length of header, data shape and type for each extension.

Parameters
filename : file path, file object, or file like object

FITS file to obtain info from. If opened, mode must be one of the following: rb, rb+, or
ab+ (i.e. the file must be readable).

output : file, bool, optional

A file-like object to write the output to. If False, does not output to a file and instead
returns a list of tuples representing the HDU info. Writes to sys.stdout by default.

kwargs

Any additional keyword arguments to be passed to pyfits.open. Note: This func-
tion sets ignore_missing_end=True by default.

append()

pyfits.append(filename, data, header=None, checksum=False, verify=True, **kwargs)
Append the header/data to FITS file if filename exists, create if not.

If only data is supplied, a minimal header is created.

Parameters
filename : file path, file object, or file like object

File to write to. If opened, must be opened for update (rb+) unless it is a new file, then
it must be opened for append (ab+). A file or GzipFile object opened for update will
be closed after return.

data : array, table, or group data object

the new data used for appending

header : Header object, optional

The header associated with data. If None, an appropriate header will be created for
the data object supplied.

checksum : bool, optional

When True adds both DATASUM and CHECKSUM cards to the header of the HDU when
written to the file.

verify : bool, optional

When True, the existing FITS file will be read in to verify it for correctness before
appending. When False, content is simply appended to the end of the file. Setting
verify to False can be much faster.

kwargs

Any additional keyword arguments to be passed to pyfits.open.

120 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/gzip.html#gzip.GzipFile
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#False

PyFITS Documentation, Release 3.4

update()

pyfits.update(filename, data, *args, **kwargs)
Update the specified extension with the input data/header.

Parameters
filename : file path, file object, or file like object

File to update. If opened, mode must be update (rb+). An opened file object or
GzipFile object will be closed upon return.

data : array, table, or group data object

the new data used for updating

header : Header object, optional

The header associated with data. If None, an appropriate header will be created for
the data object supplied.

ext, extname, extver

The rest of the arguments are flexible: the 3rd argument can be the header associated
with the data. If the 3rd argument is not a Header, it (and other positional arguments)
are assumed to be the extension specification(s). Header and extension specs can also
be keyword arguments. For example:

>>> update(file, dat, hdr, 'sci') # update the 'sci' extension
>>> update(file, dat, 3) # update the 3rd extension
>>> update(file, dat, hdr, 3) # update the 3rd extension
>>> update(file, dat, 'sci', 2) # update the 2nd SCI extension
>>> update(file, dat, 3, header=hdr) # update the 3rd extension
>>> update(file, dat, header=hdr, ext=5) # update 5th extension

kwargs

Any additional keyword arguments to be passed to pyfits.open.

getdata()

pyfits.getdata(filename, *args, **kwargs)
Get the data from an extension of a FITS file (and optionally the header).

Parameters
filename : file path, file object, or file like object

File to get data from. If opened, mode must be one of the following rb, rb+, or ab+.

ext

The rest of the arguments are for extension specification. They are flexible and are best
illustrated by examples.

No extra arguments implies the primary header:

>>> getdata('in.fits')

By extension number:

1.9. Reference/API 121

https://docs.python.org/2/library/gzip.html#gzip.GzipFile
https://docs.python.org/2/library/constants.html#None

PyFITS Documentation, Release 3.4

>>> getdata('in.fits', 0) # the primary header
>>> getdata('in.fits', 2) # the second extension
>>> getdata('in.fits', ext=2) # the second extension

By name, i.e., EXTNAME value (if unique):

>>> getdata('in.fits', 'sci')
>>> getdata('in.fits', extname='sci') # equivalent

Note EXTNAME values are not case sensitive

By combination of EXTNAME and EXTVER‘‘ as separate arguments or as a tuple:

>>> getdata('in.fits', 'sci', 2) # EXTNAME='SCI' & EXTVER=2
>>> getdata('in.fits', extname='sci', extver=2) # equivalent
>>> getdata('in.fits', ('sci', 2)) # equivalent

Ambiguous or conflicting specifications will raise an exception:

>>> getdata('in.fits', ext=('sci',1), extname='err', extver=2)

header : bool, optional

If True, return the data and the header of the specified HDU as a tuple.

lower, upper : bool, optional

If lower or upper are True, the field names in the returned data object will be
converted to lower or upper case, respectively.

view : ndarray, optional

When given, the data will be returned wrapped in the given ndarray subclass by calling:

data.view(view)

kwargs

Any additional keyword arguments to be passed to pyfits.open.

Returns
array : array, record array or groups data object

Type depends on the type of the extension being referenced.

If the optional keyword header is set to True, this function will return a (data,
header) tuple.

getheader()

pyfits.getheader(filename, *args, **kwargs)
Get the header from an extension of a FITS file.

Parameters
filename : file path, file object, or file like object

File to get header from. If an opened file object, its mode must be one of the following
rb, rb+, or ab+).

ext, extname, extver

122 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#True

PyFITS Documentation, Release 3.4

The rest of the arguments are for extension specification. See the getdata documen-
tation for explanations/examples.

kwargs

Any additional keyword arguments to be passed to pyfits.open.

Returns
header : Header object

getval()

pyfits.getval(filename, keyword, *args, **kwargs)
Get a keyword’s value from a header in a FITS file.

Parameters
filename : file path, file object, or file like object

Name of the FITS file, or file object (if opened, mode must be one of the following rb,
rb+, or ab+).

keyword : str

Keyword name

ext, extname, extver

The rest of the arguments are for extension specification. See getdata for explana-
tions/examples.

kwargs

Any additional keyword arguments to be passed to pyfits.open. Note: This func-
tion automatically specifies do_not_scale_image_data = Truewhen opening
the file so that values can be retrieved from the unmodified header.

Returns
keyword value : string, integer, or float

setval()

pyfits.setval(filename, keyword, *args, **kwargs)
Set a keyword’s value from a header in a FITS file.

If the keyword already exists, it’s value/comment will be updated. If it does not exist, a new card will be created
and it will be placed before or after the specified location. If no before or after is specified, it will be
appended at the end.

When updating more than one keyword in a file, this convenience function is a much less efficient approach
compared with opening the file for update, modifying the header, and closing the file.

Parameters
filename : file path, file object, or file like object

Name of the FITS file, or file object If opened, mode must be update (rb+). An opened
file object or GzipFile object will be closed upon return.

keyword : str

Keyword name

value : str, int, float, optional

1.9. Reference/API 123

https://docs.python.org/2/library/gzip.html#gzip.GzipFile

PyFITS Documentation, Release 3.4

Keyword value (default: None, meaning don’t modify)

comment : str, optional

Keyword comment, (default: None, meaning don’t modify)

before : str, int, optional

Name of the keyword, or index of the card before which the new card will be placed.
The argument before takes precedence over after if both are specified (default:
None).

after : str, int, optional

Name of the keyword, or index of the card after which the new card will be placed.
(default: None).

savecomment : bool, optional

When True, preserve the current comment for an existing keyword. The argument
savecomment takes precedence over comment if both specified. If comment is not
specified then the current comment will automatically be preserved (default: False).

ext, extname, extver

The rest of the arguments are for extension specification. See getdata for explana-
tions/examples.

kwargs

Any additional keyword arguments to be passed to pyfits.open. Note: This func-
tion automatically specifies do_not_scale_image_data = Truewhen opening
the file so that values can be retrieved from the unmodified header.

delval()

pyfits.delval(filename, keyword, *args, **kwargs)
Delete all instances of keyword from a header in a FITS file.

Parameters
filename : file path, file object, or file like object

Name of the FITS file, or file object If opened, mode must be update (rb+). An opened
file object or GzipFile object will be closed upon return.

keyword : str, int

Keyword name or index

ext, extname, extver

The rest of the arguments are for extension specification. See getdata for explana-
tions/examples.

kwargs

Any additional keyword arguments to be passed to pyfits.open. Note: This func-
tion automatically specifies do_not_scale_image_data = Truewhen opening
the file so that values can be retrieved from the unmodified header.

124 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/gzip.html#gzip.GzipFile

PyFITS Documentation, Release 3.4

1.9.2 HDU Lists

pyfits.hdu.hdulist.HDUList

HDUList

class pyfits.HDUList(hdus=[], file=None)
Bases: list, pyfits.verify._Verify

HDU list class. This is the top-level FITS object. When a FITS file is opened, a HDUList object is returned.

Construct a HDUList object.

Parameters
hdus : sequence of HDU objects or single HDU, optional

The HDU object(s) to comprise the HDUList. Should be instances of HDU classes
like ImageHDU or BinTableHDU .

file : file object, optional

The opened physical file associated with the HDUList.

append(hdu)
Append a new HDU to the HDUList.

Parameters
hdu : HDU object

HDU to add to the HDUList.

close(output_verify=’exception’, verbose=False, closed=True)
Close the associated FITS file and memmap object, if any.

Parameters
output_verify : str

Output verification option. Must be one of "fix", "silentfix", "ignore",
"warn", or "exception". May also be any combination of "fix"
or "silentfix" with "+ignore", +warn, or +exception" (e.g.
``"fix+warn"). See Verification options for more info.

verbose : bool

When True, print out verbose messages.

closed : bool

When True, close the underlying file object.

fileinfo(index)
Returns a dictionary detailing information about the locations of the indexed HDU within any associated
file. The values are only valid after a read or write of the associated file with no intervening changes to the
HDUList.

1.9. Reference/API 125

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#True

PyFITS Documentation, Release 3.4

Parameters
index : int

Index of HDU for which info is to be returned.

Returns
fileinfo : dict or None

The dictionary details information about the locations of the indexed HDU within an
associated file. Returns None when the HDU is not associated with a file.

Dictionary contents:

Key Value
file File object associated with the HDU
file-
name

Name of associated file object

file-
mode

Mode in which the file was opened (readonly, update, append, denywrite,
ostream)

re-
sized

Flag that when True indicates that the data has been resized since the last
read/write so the returned values may not be valid.

hdr-
Loc

Starting byte location of header in file

dat-
Loc

Starting byte location of data block in file

datSpan Data size including padding

filename()
Return the file name associated with the HDUList object if one exists. Otherwise returns None.

Returns
filename : a string containing the file name associated with the

HDUList object if an association exists. Otherwise returns None.

flush(*args, **kwargs)
Force a write of the HDUList back to the file (for append and update modes only).

Parameters
output_verify : str

Output verification option. Must be one of "fix", "silentfix", "ignore",
"warn", or "exception". May also be any combination of "fix"
or "silentfix" with "+ignore", +warn, or +exception" (e.g.
``"fix+warn"). See Verification options for more info.

verbose : bool

When True, print verbose messages

classmethod fromfile(fileobj, mode=None, memmap=None, save_backup=False, **kwargs)
Creates an HDUList instance from a file-like object.

The actual implementation of fitsopen(), and generally shouldn’t be used directly. Use pyfits.
open() instead (and see its documentation for details of the parameters accepted by this method).

classmethod fromstring(data, **kwargs)
Creates an HDUList instance from a string or other in-memory data buffer containing an entire FITS file.
Similar to HDUList.fromfile(), but does not accept the mode or memmap arguments, as they are
only relevant to reading from a file on disk.

126 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#True

PyFITS Documentation, Release 3.4

This is useful for interfacing with other libraries such as CFITSIO, and may also be useful for streaming
applications.

Parameters
data : str, buffer, memoryview, etc.

A string or other memory buffer containing an entire FITS file. It should be noted that
if that memory is read-only (such as a Python string) the returned HDUList‘s data
portions will also be read-only.

kwargs : dict

Optional keyword arguments. See pyfits.open() for details.

Returns
hdul : HDUList

An HDUList object representing the in-memory FITS file.

index_of(key)
Get the index of an HDU from the HDUList.

Parameters
key : int, str or tuple of (string, int)

The key identifying the HDU. If key is a tuple, it is of the form (key, ver) where
ver is an EXTVER value that must match the HDU being searched for.

Returns
index : int

The index of the HDU in the HDUList.

info(output=None)
Summarize the info of the HDUs in this HDUList.

Note that this function prints its results to the console—it does not return a value.

Parameters
output : file, bool, optional

A file-like object to write the output to. If False, does not output to a file and instead
returns a list of tuples representing the HDU info. Writes to sys.stdout by default.

insert(index, hdu)
Insert an HDU into the HDUList at the given index.

Parameters
index : int

Index before which to insert the new HDU.

hdu : HDU object

The HDU object to insert

readall()
Read data of all HDUs into memory.

update_extend()
Make sure that if the primary header needs the keyword EXTEND that it has it and it is correct.

writeto(fileobj, output_verify=’exception’, clobber=False, checksum=False)
Write the HDUList to a new file.

1.9. Reference/API 127

https://docs.python.org/2/library/constants.html#False

PyFITS Documentation, Release 3.4

Parameters
fileobj : file path, file object or file-like object

File to write to. If a file object, must be opened in a writeable mode.

output_verify : str

Output verification option. Must be one of "fix", "silentfix", "ignore",
"warn", or "exception". May also be any combination of "fix"
or "silentfix" with "+ignore", +warn, or +exception" (e.g.
``"fix+warn"). See Verification options for more info.

clobber : bool

When True, overwrite the output file if exists.

checksum : bool

When True adds both DATASUM and CHECKSUM cards to the headers of all HDU’s
written to the file.

1.9.3 Header Data Units

The ImageHDU and CompImageHDU classes are discussed in the section on Images.

The TableHDU and BinTableHDU classes are discussed in the section on Tables.

PrimaryHDU

class pyfits.PrimaryHDU(data=None, header=None, do_not_scale_image_data=False, ig-
nore_blank=False, uint=True, scale_back=None)

Bases: pyfits.hdu.image._ImageBaseHDU

FITS primary HDU class.

Construct a primary HDU.

Parameters
data : array or DELAYED, optional

The data in the HDU.

header : Header instance, optional

The header to be used (as a template). If header is None, a minimal header will be
provided.

do_not_scale_image_data : bool, optional

If True, image data is not scaled using BSCALE/BZERO values when read. (default:
False)

ignore_blank : bool, optional

If True, the BLANK header keyword will be ignored if present. Otherwise, pixels
equal to this value will be replaced with NaNs. (default: False)

uint : bool, optional

Interpret signed integer data where BZERO is the central value and BSCALE == 1 as
unsigned integer data. For example, int16 data with BZERO = 32768 and BSCALE
= 1 would be treated as uint16 data. (default: True)

128 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#True

PyFITS Documentation, Release 3.4

scale_back : bool, optional

If True, when saving changes to a file that contained scaled image data, restore the
data to the original type and reapply the original BSCALE/BZERO values. This could
lead to loss of accuracy if scaling back to integer values after performing floating point
operations on the data. Pseudo-unsigned integers are automatically rescaled unless
scale_back is explicitly set to False. (default: None)

add_checksum(when=None, override_datasum=False, blocking=’standard’, check-
sum_keyword=’CHECKSUM’, datasum_keyword=’DATASUM’)

Add the CHECKSUM and DATASUM cards to this HDU with the values set to the checksum calculated for
the HDU and the data respectively. The addition of the DATASUM card may be overridden.

Parameters
when : str, optional

comment string for the cards; by default the comments will represent the time when the
checksum was calculated

override_datasum : bool, optional

add the CHECKSUM card only

blocking: str, optional

“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

checksum_keyword : str, optional

The name of the header keyword to store the checksum value in; this is typically
‘CHECKSUM’ per convention, but there exist use cases in which a different keyword
should be used

datasum_keyword : str, optional

See checksum_keyword

Notes

For testing purposes, first call add_datasum with a when argument, then call add_checksum with a
when argument and override_datasum set to True. This will provide consistent comments for both
cards and enable the generation of a CHECKSUM card with a consistent value.

add_datasum(when=None, blocking=’standard’, datasum_keyword=’DATASUM’)
Add the DATASUM card to this HDU with the value set to the checksum calculated for the data.

Parameters
when : str, optional

Comment string for the card that by default represents the time when the checksum was
calculated

blocking: str, optional

“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

datasum_keyword : str, optional

The name of the header keyword to store the datasum value in; this is typically ‘DATA-
SUM’ per convention, but there exist use cases in which a different keyword should be
used

Returns
checksum : int

1.9. Reference/API 129

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#True

PyFITS Documentation, Release 3.4

The calculated datasum

Notes

For testing purposes, provide a when argument to enable the comment value in the card to remain consis-
tent. This will enable the generation of a CHECKSUM card with a consistent value.

copy()
Make a copy of the HDU, both header and data are copied.

filebytes()
Calculates and returns the number of bytes that this HDU will write to a file.

fileinfo()
Returns a dictionary detailing information about the locations of this HDU within any associated file.
The values are only valid after a read or write of the associated file with no intervening changes to the
HDUList.

Returns
dict or None

The dictionary details information about the locations of this HDU within an associated
file. Returns None when the HDU is not associated with a file.

Dictionary contents:

Key Value
file File object associated with the HDU
file-
mode

Mode in which the file was opened (readonly, copyonwrite, update,
append, ostream)

hdrLoc Starting byte location of header in file
datLoc Starting byte location of data block in file
datSpan Data size including padding

fromstring(data, checksum=False, ignore_missing_end=False, **kwargs)
Creates a new HDU object of the appropriate type from a string containing the HDU’s entire header and,
optionally, its data.

Note: When creating a new HDU from a string without a backing file object, the data of that HDU may be
read-only. It depends on whether the underlying string was an immutable Python str/bytes object, or some
kind of read-write memory buffer such as a memoryview.

Parameters
data : str, bytearray, memoryview, ndarray

A byte string containing the HDU’s header and data.

checksum : bool, optional

Check the HDU’s checksum and/or datasum.

ignore_missing_end : bool, optional

Ignore a missing end card in the header data. Note that without the end card the end of
the header may be ambiguous and resulted in a corrupt HDU. In this case the assump-
tion is that the first 2880 block that does not begin with valid FITS header data is the
beginning of the data.

kwargs : optional

May consist of additional keyword arguments specific to an HDU type–these corre-
spond to keywords recognized by the constructors of different HDU classes such as

130 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/stdtypes.html#memoryview

PyFITS Documentation, Release 3.4

PrimaryHDU , ImageHDU , or BinTableHDU . Any unrecognized keyword argu-
ments are simply ignored.

readfrom(fileobj, checksum=False, ignore_missing_end=False, **kwargs)
Read the HDU from a file. Normally an HDU should be opened with open() which reads the entire
HDU list in a FITS file. But this method is still provided for symmetry with writeto().

Parameters
fileobj : file object or file-like object

Input FITS file. The file’s seek pointer is assumed to be at the beginning of the HDU.

checksum : bool

If True, verifies that both DATASUM and CHECKSUM card values (when present in the
HDU header) match the header and data of all HDU’s in the file.

ignore_missing_end : bool

Do not issue an exception when opening a file that is missing an END card in the last
header.

req_cards(keyword, pos, test, fix_value, option, errlist)
Check the existence, location, and value of a required Card.

Parameters
keyword : str

The keyword to validate

pos : int, callable

If an int, this specifies the exact location this card should have in the header. Remem-
ber that Python is zero-indexed, so this means pos=0 requires the card to be the first
card in the header. If given a callable, it should take one argument–the actual position
of the keyword–and return True or False. This can be used for custom evaluation.
For example if pos=lambda idx: idx > 10 this will check that the keyword’s
index is greater than 10.

test : callable

This should be a callable (generally a function) that is passed the value of the given
keyword and returns True or False. This can be used to validate the value associated
with the given keyword.

fix_value : str, int, float, complex, bool, None

A valid value for a FITS keyword to to use if the given test fails to replace an invalid
value. In other words, this provides a default value to use as a replacement if the key-
word’s current value is invalid. If None, there is no replacement value and the keyword
is unfixable.

option : str

Output verification option. Must be one of "fix", "silentfix", "ignore",
"warn", or "exception". May also be any combination of "fix"
or "silentfix" with "+ignore", +warn, or +exception" (e.g.
``"fix+warn"). See Verification options for more info.

errlist : list

A list of validation errors already found in the FITS file; this is used primarily for
the validation system to collect errors across multiple HDUs and multiple calls to
req_cards.

1.9. Reference/API 131

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#None

PyFITS Documentation, Release 3.4

Notes

If pos=None, the card can be anywhere in the header. If the card does not exist, the new card will have
the fix_value as its value when created. Also check the card’s value by using the test argument.

run_option(option=’warn’, err_text=’‘, fix_text=’Fixed.’, fix=None, fixable=True)
Execute the verification with selected option.

scale(type=None, option=’old’, bscale=1, bzero=0)
Scale image data by using BSCALE/BZERO.

Call to this method will scale data and update the keywords of BSCALE and BZERO in the HDU’s header.
This method should only be used right before writing to the output file, as the data will be scaled and is
therefore not very usable after the call.

Parameters
type : str, optional

destination data type, use a string representing a numpy dtype name, (e.g. 'uint8',
'int16', 'float32' etc.). If is None, use the current data type.

option : str

How to scale the data: if "old", use the original BSCALE and BZERO values when the
data was read/created. If "minmax", use the minimum and maximum of the data to
scale. The option will be overwritten by any user specified bscale/bzero values.

bscale, bzero : int, optional

User-specified BSCALE and BZERO values

update_ext_name(*args, **kwargs)
Deprecated since version 3.2: Use the .name attribute or Header.set instead.

Update the extension name associated with the HDU.

If the keyword already exists in the Header, it’s value and/or comment will be updated. If it does not exist,
a new card will be created and it will be placed before or after the specified location. If no before or
after is specified, it will be appended at the end.

Parameters
value : str

Value to be used for the new extension name

comment : str, optional

To be used for updating, default=None.

before : str or int, optional

Name of the keyword, or index of the Card before which the new card will be placed in
the Header. The argument before takes precedence over after if both are specified.

after : str or int, optional

Name of the keyword, or index of the Card after which the new card will be placed in
the Header

savecomment : bool, optional

When True, preserve the current comment for an existing keyword. The argument
savecomment takes precedence over comment if both specified. If comment is not
specified then the current comment will automatically be preserved.

132 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#True

PyFITS Documentation, Release 3.4

update_ext_version(*args, **kwargs)
Deprecated since version 3.2: Use the .ver attribute or Header.set instead.

Update the extension version associated with the HDU.

If the keyword already exists in the Header, it’s value and/or comment will be updated. If it does not exist,
a new card will be created and it will be placed before or after the specified location. If no before or
after is specified, it will be appended at the end.

Parameters
value : str

Value to be used for the new extension version

comment : str, optional

To be used for updating; default=None.

before : str or int, optional

Name of the keyword, or index of the Card before which the new card will be placed in
the Header. The argument before takes precedence over after if both are specified.

after : str or int, optional

Name of the keyword, or index of the Card after which the new card will be placed in
the Header.

savecomment : bool, optional

When True, preserve the current comment for an existing keyword. The argument
savecomment takes precedence over comment if both specified. If comment is not
specified then the current comment will automatically be preserved.

verify(option=’warn’)
Verify all values in the instance.

Parameters
option : str

Output verification option. Must be one of "fix", "silentfix", "ignore",
"warn", or "exception". May also be any combination of "fix"
or "silentfix" with "+ignore", +warn, or +exception" (e.g.
``"fix+warn"). See Verification options for more info.

verify_checksum(blocking=’standard’)
Verify that the value in the CHECKSUM keyword matches the value calculated for the current HDU
CHECKSUM.

blocking
[str, optional] “standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

Returns
valid : int

• 0 - failure

• 1 - success

• 2 - no CHECKSUM keyword present

verify_datasum(blocking=’standard’)
Verify that the value in the DATASUM keyword matches the value calculated for the DATASUM of the
current HDU data.

1.9. Reference/API 133

https://docs.python.org/2/library/constants.html#True

PyFITS Documentation, Release 3.4

blocking
[str, optional] “standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

Returns
valid : int

• 0 - failure

• 1 - success

• 2 - no DATASUM keyword present

writeto(name, output_verify=’exception’, clobber=False, checksum=False)
Write the HDU to a new file. This is a convenience method to provide a user easier output interface if
only one HDU needs to be written to a file.

Parameters
name : file path, file object or file-like object

Output FITS file. If the file object is already opened, it must be opened in a writeable
mode.

output_verify : str

Output verification option. Must be one of "fix", "silentfix", "ignore",
"warn", or "exception". May also be any combination of "fix" or
"silentfix" with "+ignore", +warn, or +exception (e.g. "fix+warn").
See Verification options for more info.

clobber : bool

Overwrite the output file if exists.

checksum : bool

When True adds both DATASUM and CHECKSUM cards to the header of the HDU when
written to the file.

data
Image/array data as a ndarray.

Please remember that the order of axes on an Numpy array are opposite of the order specified in the FITS
file. For example for a 2D image the “rows” or y-axis are the first dimension, and the “columns” or x-axis
are the second dimension.

If the data is scaled using the BZERO and BSCALE parameters, this attribute returns the data scaled to its
physical values unless the file was opened with do_not_scale_image_data=True.

section
Access a section of the image array without loading the entire array into memory. The Section object
returned by this attribute is not meant to be used directly by itself. Rather, slices of the section return the
appropriate slice of the data, and loads only that section into memory.

Sections are mostly obsoleted by memmap support, but should still be used to deal with very large scaled
images. See the Data Sections section of the PyFITS documentation for more details.

shape
Shape of the image array–should be equivalent to self.data.shape.

size
Size (in bytes) of the data portion of the HDU.

134 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#True
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

PyFITS Documentation, Release 3.4

GroupsHDU

class pyfits.GroupsHDU(data=None, header=None)
Bases: pyfits.hdu.image.PrimaryHDU, pyfits.hdu.table._TableLikeHDU

FITS Random Groups HDU class.

See the Random Access Groups section in the PyFITS documentation for more details on working with this type
of HDU.

Iterates through the subclasses of _BaseHDU and uses that class’s match_header() method to determine which
subclass to instantiate.

It’s important to be aware that the class hierarchy is traversed in a depth-last order. Each match_header() should
identify an HDU type as uniquely as possible. Abstract types may choose to simply return False or raise
NotImplementedError to be skipped.

If any unexpected exceptions are raised while evaluating match_header(), the type is taken to be _Corrupted-
HDU.

add_checksum(when=None, override_datasum=False, blocking=’standard’, check-
sum_keyword=’CHECKSUM’, datasum_keyword=’DATASUM’)

Add the CHECKSUM and DATASUM cards to this HDU with the values set to the checksum calculated for
the HDU and the data respectively. The addition of the DATASUM card may be overridden.

Parameters
when : str, optional

comment string for the cards; by default the comments will represent the time when the
checksum was calculated

override_datasum : bool, optional

add the CHECKSUM card only

blocking: str, optional

“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

checksum_keyword : str, optional

The name of the header keyword to store the checksum value in; this is typically
‘CHECKSUM’ per convention, but there exist use cases in which a different keyword
should be used

datasum_keyword : str, optional

See checksum_keyword

Notes

For testing purposes, first call add_datasum with a when argument, then call add_checksum with a
when argument and override_datasum set to True. This will provide consistent comments for both
cards and enable the generation of a CHECKSUM card with a consistent value.

add_datasum(when=None, blocking=’standard’, datasum_keyword=’DATASUM’)
Add the DATASUM card to this HDU with the value set to the checksum calculated for the data.

Parameters
when : str, optional

Comment string for the card that by default represents the time when the checksum was
calculated

blocking: str, optional

1.9. Reference/API 135

https://docs.python.org/2/library/constants.html#True

PyFITS Documentation, Release 3.4

“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

datasum_keyword : str, optional

The name of the header keyword to store the datasum value in; this is typically ‘DATA-
SUM’ per convention, but there exist use cases in which a different keyword should be
used

Returns
checksum : int

The calculated datasum

Notes

For testing purposes, provide a when argument to enable the comment value in the card to remain consis-
tent. This will enable the generation of a CHECKSUM card with a consistent value.

copy()
Make a copy of the HDU, both header and data are copied.

filebytes()
Calculates and returns the number of bytes that this HDU will write to a file.

fileinfo()
Returns a dictionary detailing information about the locations of this HDU within any associated file.
The values are only valid after a read or write of the associated file with no intervening changes to the
HDUList.

Returns
dict or None

The dictionary details information about the locations of this HDU within an associated
file. Returns None when the HDU is not associated with a file.

Dictionary contents:

Key Value
file File object associated with the HDU
file-
mode

Mode in which the file was opened (readonly, copyonwrite, update,
append, ostream)

hdrLoc Starting byte location of header in file
datLoc Starting byte location of data block in file
datSpan Data size including padding

from_columns(columns, header=None, nrows=0, fill=False, **kwargs)
Given either a ColDefs object, a sequence of Column objects, or another table HDU or table data (a
FITS_rec or multi-field numpy.ndarray or numpy.recarray object, return a new table HDU of
the class this method was called on using the column definition from the input.

This is an alternative to the now deprecated new_table function, and otherwise accepts the same argu-
ments. See also FITS_rec.from_columns.

Parameters
columns : sequence of Column, ColDefs, or other

The columns from which to create the table data, or an object with a column-like
structure from which a ColDefs can be instantiated. This includes an existing
BinTableHDU or TableHDU , or a numpy.recarray to give some examples.

If these columns have data arrays attached that data may be used in initializing the new
table. Otherwise the input columns will be used as a template for a new table with the

136 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray

PyFITS Documentation, Release 3.4

requested number of rows.

header : Header

An optional Header object to instantiate the new HDU yet. Header keywords specif-
ically related to defining the table structure (such as the “TXXXn” keywords like
TTYPEn) will be overridden by the supplied column definitions, but all other infor-
mational and data model-specific keywords are kept.

nrows : int

Number of rows in the new table. If the input columns have data associated with them,
the size of the largest input column is used. Otherwise the default is 0.

fill : bool

If True, will fill all cells with zeros or blanks. If False, copy the data from input,
undefined cells will still be filled with zeros/blanks.

Notes

Any additional keyword arguments accepted by the HDU class’s __init__ may also be passed in as
keyword arguments.

fromstring(data, checksum=False, ignore_missing_end=False, **kwargs)
Creates a new HDU object of the appropriate type from a string containing the HDU’s entire header and,
optionally, its data.

Note: When creating a new HDU from a string without a backing file object, the data of that HDU may be
read-only. It depends on whether the underlying string was an immutable Python str/bytes object, or some
kind of read-write memory buffer such as a memoryview.

Parameters
data : str, bytearray, memoryview, ndarray

A byte string containing the HDU’s header and data.

checksum : bool, optional

Check the HDU’s checksum and/or datasum.

ignore_missing_end : bool, optional

Ignore a missing end card in the header data. Note that without the end card the end of
the header may be ambiguous and resulted in a corrupt HDU. In this case the assump-
tion is that the first 2880 block that does not begin with valid FITS header data is the
beginning of the data.

kwargs : optional

May consist of additional keyword arguments specific to an HDU type–these corre-
spond to keywords recognized by the constructors of different HDU classes such as
PrimaryHDU , ImageHDU , or BinTableHDU . Any unrecognized keyword argu-
ments are simply ignored.

readfrom(fileobj, checksum=False, ignore_missing_end=False, **kwargs)
Read the HDU from a file. Normally an HDU should be opened with open() which reads the entire
HDU list in a FITS file. But this method is still provided for symmetry with writeto().

Parameters
fileobj : file object or file-like object

Input FITS file. The file’s seek pointer is assumed to be at the beginning of the HDU.

1.9. Reference/API 137

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/stdtypes.html#memoryview

PyFITS Documentation, Release 3.4

checksum : bool

If True, verifies that both DATASUM and CHECKSUM card values (when present in the
HDU header) match the header and data of all HDU’s in the file.

ignore_missing_end : bool

Do not issue an exception when opening a file that is missing an END card in the last
header.

req_cards(keyword, pos, test, fix_value, option, errlist)
Check the existence, location, and value of a required Card.

Parameters
keyword : str

The keyword to validate

pos : int, callable

If an int, this specifies the exact location this card should have in the header. Remem-
ber that Python is zero-indexed, so this means pos=0 requires the card to be the first
card in the header. If given a callable, it should take one argument–the actual position
of the keyword–and return True or False. This can be used for custom evaluation.
For example if pos=lambda idx: idx > 10 this will check that the keyword’s
index is greater than 10.

test : callable

This should be a callable (generally a function) that is passed the value of the given
keyword and returns True or False. This can be used to validate the value associated
with the given keyword.

fix_value : str, int, float, complex, bool, None

A valid value for a FITS keyword to to use if the given test fails to replace an invalid
value. In other words, this provides a default value to use as a replacement if the key-
word’s current value is invalid. If None, there is no replacement value and the keyword
is unfixable.

option : str

Output verification option. Must be one of "fix", "silentfix", "ignore",
"warn", or "exception". May also be any combination of "fix"
or "silentfix" with "+ignore", +warn, or +exception" (e.g.
``"fix+warn"). See Verification options for more info.

errlist : list

A list of validation errors already found in the FITS file; this is used primarily for
the validation system to collect errors across multiple HDUs and multiple calls to
req_cards.

Notes

If pos=None, the card can be anywhere in the header. If the card does not exist, the new card will have
the fix_value as its value when created. Also check the card’s value by using the test argument.

run_option(option=’warn’, err_text=’‘, fix_text=’Fixed.’, fix=None, fixable=True)
Execute the verification with selected option.

scale(type=None, option=’old’, bscale=1, bzero=0)
Scale image data by using BSCALE/BZERO.

138 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#None

PyFITS Documentation, Release 3.4

Call to this method will scale data and update the keywords of BSCALE and BZERO in the HDU’s header.
This method should only be used right before writing to the output file, as the data will be scaled and is
therefore not very usable after the call.

Parameters
type : str, optional

destination data type, use a string representing a numpy dtype name, (e.g. 'uint8',
'int16', 'float32' etc.). If is None, use the current data type.

option : str

How to scale the data: if "old", use the original BSCALE and BZERO values when the
data was read/created. If "minmax", use the minimum and maximum of the data to
scale. The option will be overwritten by any user specified bscale/bzero values.

bscale, bzero : int, optional

User-specified BSCALE and BZERO values

update_ext_name(*args, **kwargs)
Deprecated since version 3.2: Use the .name attribute or Header.set instead.

Update the extension name associated with the HDU.

If the keyword already exists in the Header, it’s value and/or comment will be updated. If it does not exist,
a new card will be created and it will be placed before or after the specified location. If no before or
after is specified, it will be appended at the end.

Parameters
value : str

Value to be used for the new extension name

comment : str, optional

To be used for updating, default=None.

before : str or int, optional

Name of the keyword, or index of the Card before which the new card will be placed in
the Header. The argument before takes precedence over after if both are specified.

after : str or int, optional

Name of the keyword, or index of the Card after which the new card will be placed in
the Header

savecomment : bool, optional

When True, preserve the current comment for an existing keyword. The argument
savecomment takes precedence over comment if both specified. If comment is not
specified then the current comment will automatically be preserved.

update_ext_version(*args, **kwargs)
Deprecated since version 3.2: Use the .ver attribute or Header.set instead.

Update the extension version associated with the HDU.

If the keyword already exists in the Header, it’s value and/or comment will be updated. If it does not exist,
a new card will be created and it will be placed before or after the specified location. If no before or
after is specified, it will be appended at the end.

Parameters
value : str

1.9. Reference/API 139

https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#True

PyFITS Documentation, Release 3.4

Value to be used for the new extension version

comment : str, optional

To be used for updating; default=None.

before : str or int, optional

Name of the keyword, or index of the Card before which the new card will be placed in
the Header. The argument before takes precedence over after if both are specified.

after : str or int, optional

Name of the keyword, or index of the Card after which the new card will be placed in
the Header.

savecomment : bool, optional

When True, preserve the current comment for an existing keyword. The argument
savecomment takes precedence over comment if both specified. If comment is not
specified then the current comment will automatically be preserved.

verify(option=’warn’)
Verify all values in the instance.

Parameters
option : str

Output verification option. Must be one of "fix", "silentfix", "ignore",
"warn", or "exception". May also be any combination of "fix"
or "silentfix" with "+ignore", +warn, or +exception" (e.g.
``"fix+warn"). See Verification options for more info.

verify_checksum(blocking=’standard’)
Verify that the value in the CHECKSUM keyword matches the value calculated for the current HDU
CHECKSUM.

blocking
[str, optional] “standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

Returns
valid : int

• 0 - failure

• 1 - success

• 2 - no CHECKSUM keyword present

verify_datasum(blocking=’standard’)
Verify that the value in the DATASUM keyword matches the value calculated for the DATASUM of the
current HDU data.

blocking
[str, optional] “standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

Returns
valid : int

• 0 - failure

• 1 - success

• 2 - no DATASUM keyword present

140 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#True

PyFITS Documentation, Release 3.4

writeto(name, output_verify=’exception’, clobber=False, checksum=False)
Write the HDU to a new file. This is a convenience method to provide a user easier output interface if
only one HDU needs to be written to a file.

Parameters
name : file path, file object or file-like object

Output FITS file. If the file object is already opened, it must be opened in a writeable
mode.

output_verify : str

Output verification option. Must be one of "fix", "silentfix", "ignore",
"warn", or "exception". May also be any combination of "fix" or
"silentfix" with "+ignore", +warn, or +exception (e.g. "fix+warn").
See Verification options for more info.

clobber : bool

Overwrite the output file if exists.

checksum : bool

When True adds both DATASUM and CHECKSUM cards to the header of the HDU when
written to the file.

data
The data of a random group FITS file will be like a binary table’s data.

parnames
The names of the group parameters as described by the header.

section
Access a section of the image array without loading the entire array into memory. The Section object
returned by this attribute is not meant to be used directly by itself. Rather, slices of the section return the
appropriate slice of the data, and loads only that section into memory.

Sections are mostly obsoleted by memmap support, but should still be used to deal with very large scaled
images. See the Data Sections section of the PyFITS documentation for more details.

shape
Shape of the image array–should be equivalent to self.data.shape.

size
Returns the size (in bytes) of the HDU’s data part.

GroupData

class pyfits.GroupData
Bases: pyfits.fitsrec.FITS_rec

Random groups data object.

Allows structured access to FITS Group data in a manner analogous to tables.

Parameters
input : array or FITS_rec instance

input data, either the group data itself (a numpy.ndarray) or a record array
(FITS_rec) which will contain both group parameter info and the data. The rest
of the arguments are used only for the first case.

bitpix : int

1.9. Reference/API 141

https://docs.python.org/2/library/constants.html#True
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

PyFITS Documentation, Release 3.4

data type as expressed in FITS BITPIX value (8, 16, 32, 64, -32, or -64)

pardata : sequence of arrays

parameter data, as a list of (numeric) arrays.

parnames : sequence of str

list of parameter names.

bscale : int

BSCALE of the data

bzero : int

BZERO of the data

parbscales : sequence of int

list of bscales for the parameters

parbzeros : sequence of int

list of bzeros for the parameters

par(parname)
Get the group parameter values.

data
The raw group data represented as a multi-dimensional numpy.ndarray array.

Group

class pyfits.Group(input, row=0, start=None, end=None, step=None, base=None)
Bases: pyfits.fitsrec.FITS_record

One group of the random group data.

par(parname)
Get the group parameter value.

setpar(parname, value)
Set the group parameter value.

StreamingHDU

class pyfits.StreamingHDU(name, header)
Bases: object

A class that provides the capability to stream data to a FITS file instead of requiring data to all be written at
once.

The following pseudocode illustrates its use:

header = pyfits.Header()

for all the cards you need in the header:
header[key] = (value, comment)

shdu = pyfits.StreamingHDU('filename.fits', header)

for each piece of data:

142 Chapter 1. Introduction

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/2/library/functions.html#object

PyFITS Documentation, Release 3.4

shdu.write(data)

shdu.close()

Construct a StreamingHDU object given a file name and a header.

Parameters
name : file path, file object, or file like object

The file to which the header and data will be streamed. If opened, the file object must
be opened in a writeable binary mode such as ‘wb’ or ‘ab+’.

header : Header instance

The header object associated with the data to be written to the file.

Notes

The file will be opened and the header appended to the end of the file. If the file does not already exist, it will be
created, and if the header represents a Primary header, it will be written to the beginning of the file. If the file
does not exist and the provided header is not a Primary header, a default Primary HDU will be inserted at the
beginning of the file and the provided header will be added as the first extension. If the file does already exist,
but the provided header represents a Primary header, the header will be modified to an image extension header
and appended to the end of the file.

close()
Close the physical FITS file.

write(data)
Write the given data to the stream.

Parameters
data : ndarray

Data to stream to the file.

Returns
writecomplete : int

Flag that when True indicates that all of the required data has been written to the
stream.

Notes

Only the amount of data specified in the header provided to the class constructor may be written to the
stream. If the provided data would cause the stream to overflow, an IOError exception is raised and
the data is not written. Once sufficient data has been written to the stream to satisfy the amount specified
in the header, the stream is padded to fill a complete FITS block and no more data will be accepted. An
attempt to write more data after the stream has been filled will raise an IOError exception. If the dtype
of the input data does not match what is expected by the header, a exceptions.TypeError exception
is raised.

size
Return the size (in bytes) of the data portion of the HDU.

1.9. Reference/API 143

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/exceptions.html#exceptions.IOError
https://docs.python.org/2/library/exceptions.html#exceptions.IOError
https://docs.python.org/2/library/exceptions.html#exceptions.TypeError

PyFITS Documentation, Release 3.4

1.9.4 Headers

Header

class pyfits.Header(cards=[])
Bases: object

FITS header class. This class exposes both a dict-like interface and a list-like interface to FITS headers.

The header may be indexed by keyword and, like a dict, the associated value will be returned. When the header
contains cards with duplicate keywords, only the value of the first card with the given keyword will be returned.
It is also possible to use a 2-tuple as the index in the form (keyword, n)–this returns the n-th value with that
keyword, in the case where there are duplicate keywords.

For example:

>>> header['NAXIS']
0
>>> header[('FOO', 1)] # Return the value of the second FOO keyword
'foo'

The header may also be indexed by card number:

>>> header[0] # Return the value of the first card in the header
'T'

Commentary keywords such as HISTORY and COMMENT are special cases: When indexing the Header object
with either ‘HISTORY’ or ‘COMMENT’ a list of all the HISTORY/COMMENT values is returned:

>>> header['HISTORY']
This is the first history entry in this header.
This is the second history entry in this header.
...

See the PyFITS documentation for more details on working with headers.

Construct a Header from an iterable and/or text file.

Parameters
cards : A list of Card objects, optional

The cards to initialize the header with.

add_blank(value=’‘, before=None, after=None)
Add a blank card.

Parameters
value : str, optional

Text to be added.

before : str or int, optional

Same as in Header.update

after : str or int, optional

Same as in Header.update

add_comment(value, before=None, after=None)
Add a COMMENT card.

144 Chapter 1. Introduction

https://docs.python.org/2/library/functions.html#object

PyFITS Documentation, Release 3.4

Parameters
value : str

Text to be added.

before : str or int, optional

Same as in Header.update

after : str or int, optional

Same as in Header.update

add_history(value, before=None, after=None)
Add a HISTORY card.

Parameters
value : str

History text to be added.

before : str or int, optional

Same as in Header.update

after : str or int, optional

Same as in Header.update

append(card=None, useblanks=True, bottom=False, end=False)
Appends a new keyword+value card to the end of the Header, similar to list.append.

By default if the last cards in the Header have commentary keywords, this will append the new keyword
before the commentary (unless the new keyword is also commentary).

Also differs from list.append in that it can be called with no arguments: In this case a blank card is
appended to the end of the Header. In the case all the keyword arguments are ignored.

Parameters
card : str, tuple

A keyword or a (keyword, value, [comment]) tuple representing a single header card;
the comment is optional in which case a 2-tuple may be used

useblanks : bool, optional

If there are blank cards at the end of the Header, replace the first blank card so that the
total number of cards in the Header does not increase. Otherwise preserve the number
of blank cards.

bottom : bool, optional

If True, instead of appending after the last non-commentary card, append after the last
non-blank card.

end : bool, optional

If True, ignore the useblanks and bottom options, and append at the very end of the
Header.

clear()
Remove all cards from the header.

copy(strip=False)
Make a copy of the Header.

1.9. Reference/API 145

PyFITS Documentation, Release 3.4

Parameters
strip : bool, optional

If True, strip any headers that are specific to one of the standard HDU types, so that
this header can be used in a different HDU.

Returns
header

A new Header instance.

count(keyword)
Returns the count of the given keyword in the header, similar to list.count if the Header object is
treated as a list of keywords.

Parameters
keyword : str

The keyword to count instances of in the header

extend(cards, strip=True, unique=False, update=False, update_first=False, useblanks=True, bot-
tom=False, end=False)

Appends multiple keyword+value cards to the end of the header, similar to list.extend.

Parameters
cards : iterable

An iterable of (keyword, value, [comment]) tuples; see Header.append.

strip : bool, optional

Remove any keywords that have meaning only to specific types of HDUs, so that only
more general keywords are added from extension Header or Card list (default: True).

unique : bool, optional

If True, ensures that no duplicate keywords are appended; keywords already in this
header are simply discarded. The exception is commentary keywords (COMMENT,
HISTORY, etc.): they are only treated as duplicates if their values match.

update : bool, optional

If True, update the current header with the values and comments from duplicate key-
words in the input header. This supercedes the unique argument. Commentary key-
words are treated the same as if unique=True.

update_first : bool, optional

If the first keyword in the header is ‘SIMPLE’, and the first keyword in the input header
is ‘XTENSION’, the ‘SIMPLE’ keyword is replaced by the ‘XTENSION’ keyword.
Likewise if the first keyword in the header is ‘XTENSION’ and the first keyword in
the input header is ‘SIMPLE’, the ‘XTENSION’ keyword is replaced by the ‘SIMPLE’
keyword. This behavior is otherwise dumb as to whether or not the resulting header
is a valid primary or extension header. This is mostly provided to support backwards
compatibility with the old Header.fromTxtFile() method, and only applies if
update=True.

useblanks, bottom, end : bool, optional

These arguments are passed to Header.append() while appending new cards to the
header.

146 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#True

PyFITS Documentation, Release 3.4

classmethod fromfile(fileobj, sep=’‘, endcard=True, padding=True)
Similar to Header.fromstring(), but reads the header string from a given file-like object or file-
name.

Parameters
fileobj : str, file-like

A filename or an open file-like object from which a FITS header is to be read. For open
file handles the file pointer must be at the beginning of the header.

sep : str, optional

The string separating cards from each other, such as a newline. By default there is no
card separator (as is the case in a raw FITS file).

endcard : bool, optional

If True (the default) the header must end with an END card in order to be considered
valid. If an END card is not found an IOError is raised.

padding : bool, optional

If True (the default) the header will be required to be padded out to a multiple of 2880,
the FITS header block size. Otherwise any padding, or lack thereof, is ignored.

Returns
header

A new Header instance.

classmethod fromkeys(iterable, value=None)
Similar to dict.fromkeys()–creates a new Header from an iterable of keywords and an optional
default value.

This method is not likely to be particularly useful for creating real world FITS headers, but it is useful for
testing.

Parameters
iterable

Any iterable that returns strings representing FITS keywords.

value : optional

A default value to assign to each keyword; must be a valid type for FITS keywords.

Returns
header

A new Header instance.

classmethod fromstring(data, sep=’‘)
Creates an HDU header from a byte string containing the entire header data.

Parameters
data : str

String containing the entire header.

sep : str, optional

The string separating cards from each other, such as a newline. By default there is no
card separator (as is the case in a raw FITS file).

Returns
header

1.9. Reference/API 147

https://docs.python.org/2/library/exceptions.html#exceptions.IOError
https://docs.python.org/2/library/stdtypes.html#dict.fromkeys

PyFITS Documentation, Release 3.4

A new Header instance.

classmethod fromtextfile(fileobj, endcard=False)
Equivalent to:

>>> Header.fromfile(fileobj, sep='\n', endcard=False,
... padding=False)

get(key, default=None)
Similar to dict.get()–returns the value associated with keyword in the header, or a default value if
the keyword is not found.

Parameters
key : str

A keyword that may or may not be in the header.

default : optional

A default value to return if the keyword is not found in the header.

Returns
value

The value associated with the given keyword, or the default value if the keyword is not
in the header.

index(keyword, start=None, stop=None)
Returns the index if the first instance of the given keyword in the header, similar to list.index if the
Header object is treated as a list of keywords.

Parameters
keyword : str

The keyword to look up in the list of all keywords in the header

start : int, optional

The lower bound for the index

stop : int, optional

The upper bound for the index

insert(key, card, useblanks=True, after=False)
Inserts a new keyword+value card into the Header at a given location, similar to list.insert.

Parameters
key : int, str, or tuple

The index into the list of header keywords before which the new keyword should be
inserted, or the name of a keyword before which the new keyword should be inserted.
Can also accept a (keyword, index) tuple for inserting around duplicate keywords.

card : str, tuple

A keyword or a (keyword, value, [comment]) tuple; see Header.append

useblanks : bool, optional

If there are blank cards at the end of the Header, replace the first blank card so that the
total number of cards in the Header does not increase. Otherwise preserve the number
of blank cards.

after : bool, optional

148 Chapter 1. Introduction

https://docs.python.org/2/library/stdtypes.html#dict.get

PyFITS Documentation, Release 3.4

If set to True, insert after the specified index or keyword, rather than before it. Defaults
to False.

items()
Like dict.items().

iteritems()
Like dict.iteritems().

iterkeys()
Like dict.iterkeys()–iterating directly over the Header instance has the same behavior.

itervalues()
Like dict.itervalues().

keys()
Return a list of keywords in the header in the order they appear–like dict.keys() but ordered.

pop(*args)
Works like list.pop() if no arguments or an index argument are supplied; otherwise works like
dict.pop().

popitem()
Similar to dict.popitem().

remove(keyword)
Removes the first instance of the given keyword from the header similar to list.remove if the Header
object is treated as a list of keywords.

Parameters
keyword : str

The keyword of which to remove the first instance in the header

rename_keyword(oldkeyword, newkeyword, force=False)
Rename a card’s keyword in the header.

Parameters
oldkeyword : str or int

Old keyword or card index

newkeyword : str

New keyword

force : bool, optional

When True, if the new keyword already exists in the header, force the creation of a
duplicate keyword. Otherwise a ValueError is raised.

set(keyword, value=None, comment=None, before=None, after=None, savecomment=False)
Set the value and/or comment and/or position of a specified keyword.

If the keyword does not already exist in the header, a new keyword is created in the specified position, or
appended to the end of the header if no position is specified.

This method is similar to Header.update() prior to PyFITS 3.1.

Note: It should be noted that header.set(keyword, value) and header.set(keyword,
value, comment) are equivalent to header[keyword] = value and header[keyword] =
(value, comment) respectively.

New keywords can also be inserted relative to existing keywords using, for example:

1.9. Reference/API 149

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/stdtypes.html#dict.items
https://docs.python.org/2/library/stdtypes.html#dict.iteritems
https://docs.python.org/2/library/stdtypes.html#dict.iterkeys
https://docs.python.org/2/library/stdtypes.html#dict.itervalues
https://docs.python.org/2/library/stdtypes.html#dict.keys
https://docs.python.org/2/library/stdtypes.html#dict.pop
https://docs.python.org/2/library/stdtypes.html#dict.popitem
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/exceptions.html#exceptions.ValueError

PyFITS Documentation, Release 3.4

>>> header.insert('NAXIS1', ('NAXIS', 2, 'Number of axes'))

to insert before an existing keyword, or:

>>> header.insert('NAXIS', ('NAXIS1', 4096), after=True)

to insert after an existing keyword.

The only advantage of using Header.set() is that it easily replaces the old usage of Header.
update() both conceptually and in terms of function signature.

Parameters
keyword : str

A header keyword

value : str, optional

The value to set for the given keyword; if None the existing value is kept, but ‘’ may be
used to set a blank value

comment : str, optional

The comment to set for the given keyword; if None the existing comment is kept, but
'' may be used to set a blank comment

before : str, int, optional

Name of the keyword, or index of the Card before which this card should be located in
the header. The argument before takes precedence over after if both specified.

after : str, int, optional

Name of the keyword, or index of the Card after which this card should be located in
the header.

savecomment : bool, optional

This option is provided primarily for compatibilty with the old Header.update
(which worked differently before PyFITS v3.4). If True, this causes the existing com-
ment for the specified keyword (if it exists) to be preserved even if a different comment
is provided via the comment argument. In other words, it causes the comment argu-
ment to be ignored (but only if there is already a comment).

setdefault(key, default=None)
Similar to dict.setdefault().

tofile(fileobj, sep=’‘, endcard=True, padding=True, clobber=False)
Writes the header to file or file-like object.

By default this writes the header exactly as it would be written to a FITS file, with the END card included
and padding to the next multiple of 2880 bytes. However, aspects of this may be controlled.

Parameters
fileobj : str, file, optional

Either the pathname of a file, or an open file handle or file-like object

sep : str, optional

The character or string with which to separate cards. By default there is no separator,
but one could use '\\n', for example, to separate each card with a new line

150 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/stdtypes.html#dict.setdefault

PyFITS Documentation, Release 3.4

endcard : bool, optional

If True (default) adds the END card to the end of the header string

padding : bool, optional

If True (default) pads the string with spaces out to the next multiple of 2880 characters

clobber : bool, optional

If True, overwrites the output file if it already exists

tostring(sep=’‘, endcard=True, padding=True)
Returns a string representation of the header.

By default this uses no separator between cards, adds the END card, and pads the string with spaces to the
next multiple of 2880 bytes. That is, it returns the header exactly as it would appear in a FITS file.

Parameters
sep : str, optional

The character or string with which to separate cards. By default there is no separator,
but one could use '\\n', for example, to separate each card with a new line

endcard : bool, optional

If True (default) adds the END card to the end of the header string

padding : bool, optional

If True (default) pads the string with spaces out to the next multiple of 2880 characters

Returns
s : string

A string representing a FITS header.

totextfile(fileobj, endcard=False, clobber=False)
Equivalent to:

>>> Header.tofile(fileobj, sep='\n', endcard=False,
... padding=False, clobber=clobber)

update(*args, **kwargs)
Update the Header with new keyword values, updating the values of existing keywords and appending
new keywords otherwise; similar to dict.update.

update accepts either a dict-like object or an iterable. In the former case the keys must be header
keywords and the values may be either scalar values or (value, comment) tuples. In the case of an iterable
the items must be (keyword, value) tuples or (keyword, value, comment) tuples.

Arbitrary arguments are also accepted, in which case the update() is called again with the kwargs dict as
its only argument. That is,

>>> header.update(NAXIS1=100, NAXIS2=100)

is equivalent to:

>>> header.update({'NAXIS1': 100, 'NAXIS2': 100})

values()
Returns a list of the values of all cards in the header.

1.9. Reference/API 151

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/stdtypes.html#dict.update

PyFITS Documentation, Release 3.4

cards
The underlying physical cards that make up this Header; it can be looked at, but it should not be modified
directly.

comments
View the comments associated with each keyword, if any.

For example, to see the comment on the NAXIS keyword:

>>> header.comments['NAXIS']
number of data axes

Comments can also be updated through this interface:

>>> header.comments['NAXIS'] = 'Number of data axes'

1.9.5 Cards

Card

class pyfits.Card(keyword=None, value=None, comment=None, **kwargs)
Bases: pyfits.verify._Verify

classmethod fromstring(image)
Construct a Card object from a (raw) string. It will pad the string if it is not the length of a card image
(80 columns). If the card image is longer than 80 columns, assume it contains CONTINUE card(s).

classmethod normalize_keyword(keyword)
classmethod to convert a keyword value that may contain a field-specifier to uppercase. The effect is
to raise the key to uppercase and leave the field specifier in its original case.

Parameters
key : or str

A keyword value or a keyword.field-specifier value

run_option(option=’warn’, err_text=’‘, fix_text=’Fixed.’, fix=None, fixable=True)
Execute the verification with selected option.

verify(option=’warn’)
Verify all values in the instance.

Parameters
option : str

Output verification option. Must be one of "fix", "silentfix", "ignore",
"warn", or "exception". May also be any combination of "fix"
or "silentfix" with "+ignore", +warn, or +exception" (e.g.
``"fix+warn"). See Verification options for more info.

comment
Get the comment attribute from the card image if not already set.

field_specifier
The field-specifier of record-valued keyword cards; always None on normal cards.

image
The card “image”, that is, the 80 byte character string that represents this card in an actual FITS header.

152 Chapter 1. Introduction

https://docs.python.org/2/library/functions.html#classmethod
https://docs.python.org/2/library/constants.html#None

PyFITS Documentation, Release 3.4

is_blank
True if the card is completely blank–that is, it has no keyword, value, or comment. It appears in the
header as 80 spaces.

Returns False otherwise.

keyword
Returns the keyword name parsed from the card image.

length = 80
The length of a Card image; should always be 80 for valid FITS files.

rawkeyword
On record-valued keyword cards this is the name of the standard <= 8 character FITS keyword that this
RVKC is stored in. Otherwise it is the card’s normal keyword.

rawvalue
On record-valued keyword cards this is the raw string value in the <field-specifier>: <value>
format stored in the card in order to represent a RVKC. Otherwise it is the card’s normal value.

value
The value associated with the keyword stored in this card.

1.9.6 Tables

BinTableHDU

class pyfits.BinTableHDU(data=None, header=None, name=None, uint=False)
Bases: pyfits.hdu.table._TableBaseHDU

Binary table HDU class.

Parameters
header : Header instance

header to be used

data : array

data to be used

name : str

name to be populated in EXTNAME keyword

uint : bool, optional

set to True if the table contains unsigned integer columns.

add_checksum(when=None, override_datasum=False, blocking=’standard’, check-
sum_keyword=’CHECKSUM’, datasum_keyword=’DATASUM’)

Add the CHECKSUM and DATASUM cards to this HDU with the values set to the checksum calculated for
the HDU and the data respectively. The addition of the DATASUM card may be overridden.

Parameters
when : str, optional

comment string for the cards; by default the comments will represent the time when the
checksum was calculated

override_datasum : bool, optional

add the CHECKSUM card only

1.9. Reference/API 153

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#True

PyFITS Documentation, Release 3.4

blocking: str, optional

“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

checksum_keyword : str, optional

The name of the header keyword to store the checksum value in; this is typically
‘CHECKSUM’ per convention, but there exist use cases in which a different keyword
should be used

datasum_keyword : str, optional

See checksum_keyword

Notes

For testing purposes, first call add_datasum with a when argument, then call add_checksum with a
when argument and override_datasum set to True. This will provide consistent comments for both
cards and enable the generation of a CHECKSUM card with a consistent value.

add_datasum(when=None, blocking=’standard’, datasum_keyword=’DATASUM’)
Add the DATASUM card to this HDU with the value set to the checksum calculated for the data.

Parameters
when : str, optional

Comment string for the card that by default represents the time when the checksum was
calculated

blocking: str, optional

“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

datasum_keyword : str, optional

The name of the header keyword to store the datasum value in; this is typically ‘DATA-
SUM’ per convention, but there exist use cases in which a different keyword should be
used

Returns
checksum : int

The calculated datasum

Notes

For testing purposes, provide a when argument to enable the comment value in the card to remain consis-
tent. This will enable the generation of a CHECKSUM card with a consistent value.

copy()
Make a copy of the table HDU, both header and data are copied.

dump(datafile=None, cdfile=None, hfile=None, clobber=False)
Dump the table HDU to a file in ASCII format. The table may be dumped in three separate files, one
containing column definitions, one containing header parameters, and one for table data.

Parameters
datafile : file path, file object or file-like object, optional

Output data file. The default is the root name of the fits file associated with this HDU
appended with the extension .txt.

cdfile : file path, file object or file-like object, optional

154 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#True

PyFITS Documentation, Release 3.4

Output column definitions file. The default is None, no column definitions output is
produced.

hfile : file path, file object or file-like object, optional

Output header parameters file. The default is None, no header parameters output is
produced.

clobber : bool

Overwrite the output files if they exist.

Notes

The primary use for the dump method is to allow viewing and editing the table data and parameters in a
standard text editor. The load method can be used to create a new table from the three plain text (ASCII)
files.

• datafile: Each line of the data file represents one row of table data. The data is output one column at
a time in column order. If a column contains an array, each element of the column array in the current
row is output before moving on to the next column. Each row ends with a new line.

Integer data is output right-justified in a 21-character field followed by a blank. Floating point data
is output right justified using ‘g’ format in a 21-character field with 15 digits of precision, followed
by a blank. String data that does not contain whitespace is output left-justified in a field whose width
matches the width specified in the TFORM header parameter for the column, followed by a blank.
When the string data contains whitespace characters, the string is enclosed in quotation marks ("").
For the last data element in a row, the trailing blank in the field is replaced by a new line character.

For column data containing variable length arrays (‘P’ format), the array data is preceded by the string
'VLA_Length= ' and the integer length of the array for that row, left-justified in a 21-character
field, followed by a blank.

Note: This format does not support variable length arrays using the (‘Q’ format) due to difficult to
overcome ambiguities. What this means is that this file format cannot support VLA columns in tables
stored in files that are over 2 GB in size.

For column data representing a bit field (‘X’ format), each bit value in the field is output right-justified
in a 21-character field as 1 (for true) or 0 (for false).

• cdfile: Each line of the column definitions file provides the definitions for one column in the table. The
line is broken up into 8, sixteen-character fields. The first field provides the column name (TTYPEn).
The second field provides the column format (TFORMn). The third field provides the display format
(TDISPn). The fourth field provides the physical units (TUNITn). The fifth field provides the di-
mensions for a multidimensional array (TDIMn). The sixth field provides the value that signifies an
undefined value (TNULLn). The seventh field provides the scale factor (TSCALn). The eighth field
provides the offset value (TZEROn). A field value of "" is used to represent the case where no value
is provided.

• hfile: Each line of the header parameters file provides the definition of a single HDU header card as
represented by the card image.

filebytes()
Calculates and returns the number of bytes that this HDU will write to a file.

fileinfo()
Returns a dictionary detailing information about the locations of this HDU within any associated file.
The values are only valid after a read or write of the associated file with no intervening changes to the
HDUList.

1.9. Reference/API 155

https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None

PyFITS Documentation, Release 3.4

Returns
dict or None

The dictionary details information about the locations of this HDU within an associated
file. Returns None when the HDU is not associated with a file.

Dictionary contents:

Key Value
file File object associated with the HDU
file-
mode

Mode in which the file was opened (readonly, copyonwrite, update,
append, ostream)

hdrLoc Starting byte location of header in file
datLoc Starting byte location of data block in file
datSpan Data size including padding

from_columns(columns, header=None, nrows=0, fill=False, **kwargs)
Given either a ColDefs object, a sequence of Column objects, or another table HDU or table data (a
FITS_rec or multi-field numpy.ndarray or numpy.recarray object, return a new table HDU of
the class this method was called on using the column definition from the input.

This is an alternative to the now deprecated new_table function, and otherwise accepts the same argu-
ments. See also FITS_rec.from_columns.

Parameters
columns : sequence of Column, ColDefs, or other

The columns from which to create the table data, or an object with a column-like
structure from which a ColDefs can be instantiated. This includes an existing
BinTableHDU or TableHDU , or a numpy.recarray to give some examples.

If these columns have data arrays attached that data may be used in initializing the new
table. Otherwise the input columns will be used as a template for a new table with the
requested number of rows.

header : Header

An optional Header object to instantiate the new HDU yet. Header keywords specif-
ically related to defining the table structure (such as the “TXXXn” keywords like
TTYPEn) will be overridden by the supplied column definitions, but all other infor-
mational and data model-specific keywords are kept.

nrows : int

Number of rows in the new table. If the input columns have data associated with them,
the size of the largest input column is used. Otherwise the default is 0.

fill : bool

If True, will fill all cells with zeros or blanks. If False, copy the data from input,
undefined cells will still be filled with zeros/blanks.

Notes

Any additional keyword arguments accepted by the HDU class’s __init__ may also be passed in as
keyword arguments.

fromstring(data, checksum=False, ignore_missing_end=False, **kwargs)
Creates a new HDU object of the appropriate type from a string containing the HDU’s entire header and,
optionally, its data.

156 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False

PyFITS Documentation, Release 3.4

Note: When creating a new HDU from a string without a backing file object, the data of that HDU may be
read-only. It depends on whether the underlying string was an immutable Python str/bytes object, or some
kind of read-write memory buffer such as a memoryview.

Parameters
data : str, bytearray, memoryview, ndarray

A byte string containing the HDU’s header and data.

checksum : bool, optional

Check the HDU’s checksum and/or datasum.

ignore_missing_end : bool, optional

Ignore a missing end card in the header data. Note that without the end card the end of
the header may be ambiguous and resulted in a corrupt HDU. In this case the assump-
tion is that the first 2880 block that does not begin with valid FITS header data is the
beginning of the data.

kwargs : optional

May consist of additional keyword arguments specific to an HDU type–these corre-
spond to keywords recognized by the constructors of different HDU classes such as
PrimaryHDU , ImageHDU , or BinTableHDU . Any unrecognized keyword argu-
ments are simply ignored.

classmethod load(datafile, cdfile=None, hfile=None, replace=False, header=None)
Create a table from the input ASCII files. The input is from up to three separate files, one containing
column definitions, one containing header parameters, and one containing column data.

The column definition and header parameters files are not required. When absent the column definitions
and/or header parameters are taken from the header object given in the header argument; otherwise sensible
defaults are inferred (though this mode is not recommended).

Parameters
datafile : file path, file object or file-like object

Input data file containing the table data in ASCII format.

cdfile : file path, file object, file-like object, optional

Input column definition file containing the names, formats, display formats, physical
units, multidimensional array dimensions, undefined values, scale factors, and offsets
associated with the columns in the table. If None, the column definitions are taken
from the current values in this object.

hfile : file path, file object, file-like object, optional

Input parameter definition file containing the header parameter definitions to be associ-
ated with the table. If None, the header parameter definitions are taken from the current
values in this objects header.

replace : bool

When True, indicates that the entire header should be replaced with the contents of the
ASCII file instead of just updating the current header.

header : Header object

When the cdfile and hfile are missing, use this Header object in the creation of the
new table and HDU. Otherwise this Header supercedes the keywords from hfile, which
is only used to update values not present in this Header, unless replace=True in
which this Header’s values are completely replaced with the values from hfile.

1.9. Reference/API 157

https://docs.python.org/2/library/stdtypes.html#memoryview
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#True

PyFITS Documentation, Release 3.4

Notes

The primary use for the load method is to allow the input of ASCII data that was edited in a standard text
editor of the table data and parameters. The dump method can be used to create the initial ASCII files.

• datafile: Each line of the data file represents one row of table data. The data is output one column at
a time in column order. If a column contains an array, each element of the column array in the current
row is output before moving on to the next column. Each row ends with a new line.

Integer data is output right-justified in a 21-character field followed by a blank. Floating point data
is output right justified using ‘g’ format in a 21-character field with 15 digits of precision, followed
by a blank. String data that does not contain whitespace is output left-justified in a field whose width
matches the width specified in the TFORM header parameter for the column, followed by a blank.
When the string data contains whitespace characters, the string is enclosed in quotation marks ("").
For the last data element in a row, the trailing blank in the field is replaced by a new line character.

For column data containing variable length arrays (‘P’ format), the array data is preceded by the string
'VLA_Length= ' and the integer length of the array for that row, left-justified in a 21-character
field, followed by a blank.

Note: This format does not support variable length arrays using the (‘Q’ format) due to difficult to
overcome ambiguities. What this means is that this file format cannot support VLA columns in tables
stored in files that are over 2 GB in size.

For column data representing a bit field (‘X’ format), each bit value in the field is output right-justified
in a 21-character field as 1 (for true) or 0 (for false).

• cdfile: Each line of the column definitions file provides the definitions for one column in the table. The
line is broken up into 8, sixteen-character fields. The first field provides the column name (TTYPEn).
The second field provides the column format (TFORMn). The third field provides the display format
(TDISPn). The fourth field provides the physical units (TUNITn). The fifth field provides the di-
mensions for a multidimensional array (TDIMn). The sixth field provides the value that signifies an
undefined value (TNULLn). The seventh field provides the scale factor (TSCALn). The eighth field
provides the offset value (TZEROn). A field value of "" is used to represent the case where no value
is provided.

• hfile: Each line of the header parameters file provides the definition of a single HDU header card as
represented by the card image.

readfrom(fileobj, checksum=False, ignore_missing_end=False, **kwargs)
Read the HDU from a file. Normally an HDU should be opened with open() which reads the entire
HDU list in a FITS file. But this method is still provided for symmetry with writeto().

Parameters
fileobj : file object or file-like object

Input FITS file. The file’s seek pointer is assumed to be at the beginning of the HDU.

checksum : bool

If True, verifies that both DATASUM and CHECKSUM card values (when present in the
HDU header) match the header and data of all HDU’s in the file.

ignore_missing_end : bool

Do not issue an exception when opening a file that is missing an END card in the last
header.

req_cards(keyword, pos, test, fix_value, option, errlist)
Check the existence, location, and value of a required Card.

158 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#True

PyFITS Documentation, Release 3.4

Parameters
keyword : str

The keyword to validate

pos : int, callable

If an int, this specifies the exact location this card should have in the header. Remem-
ber that Python is zero-indexed, so this means pos=0 requires the card to be the first
card in the header. If given a callable, it should take one argument–the actual position
of the keyword–and return True or False. This can be used for custom evaluation.
For example if pos=lambda idx: idx > 10 this will check that the keyword’s
index is greater than 10.

test : callable

This should be a callable (generally a function) that is passed the value of the given
keyword and returns True or False. This can be used to validate the value associated
with the given keyword.

fix_value : str, int, float, complex, bool, None

A valid value for a FITS keyword to to use if the given test fails to replace an invalid
value. In other words, this provides a default value to use as a replacement if the key-
word’s current value is invalid. If None, there is no replacement value and the keyword
is unfixable.

option : str

Output verification option. Must be one of "fix", "silentfix", "ignore",
"warn", or "exception". May also be any combination of "fix"
or "silentfix" with "+ignore", +warn, or +exception" (e.g.
``"fix+warn"). See Verification options for more info.

errlist : list

A list of validation errors already found in the FITS file; this is used primarily for
the validation system to collect errors across multiple HDUs and multiple calls to
req_cards.

Notes

If pos=None, the card can be anywhere in the header. If the card does not exist, the new card will have
the fix_value as its value when created. Also check the card’s value by using the test argument.

run_option(option=’warn’, err_text=’‘, fix_text=’Fixed.’, fix=None, fixable=True)
Execute the verification with selected option.

update()
Update header keywords to reflect recent changes of columns.

update_ext_name(*args, **kwargs)
Deprecated since version 3.2: Use the .name attribute or Header.set instead.

Update the extension name associated with the HDU.

If the keyword already exists in the Header, it’s value and/or comment will be updated. If it does not exist,
a new card will be created and it will be placed before or after the specified location. If no before or
after is specified, it will be appended at the end.

Parameters
value : str

1.9. Reference/API 159

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#None

PyFITS Documentation, Release 3.4

Value to be used for the new extension name

comment : str, optional

To be used for updating, default=None.

before : str or int, optional

Name of the keyword, or index of the Card before which the new card will be placed in
the Header. The argument before takes precedence over after if both are specified.

after : str or int, optional

Name of the keyword, or index of the Card after which the new card will be placed in
the Header

savecomment : bool, optional

When True, preserve the current comment for an existing keyword. The argument
savecomment takes precedence over comment if both specified. If comment is not
specified then the current comment will automatically be preserved.

update_ext_version(*args, **kwargs)
Deprecated since version 3.2: Use the .ver attribute or Header.set instead.

Update the extension version associated with the HDU.

If the keyword already exists in the Header, it’s value and/or comment will be updated. If it does not exist,
a new card will be created and it will be placed before or after the specified location. If no before or
after is specified, it will be appended at the end.

Parameters
value : str

Value to be used for the new extension version

comment : str, optional

To be used for updating; default=None.

before : str or int, optional

Name of the keyword, or index of the Card before which the new card will be placed in
the Header. The argument before takes precedence over after if both are specified.

after : str or int, optional

Name of the keyword, or index of the Card after which the new card will be placed in
the Header.

savecomment : bool, optional

When True, preserve the current comment for an existing keyword. The argument
savecomment takes precedence over comment if both specified. If comment is not
specified then the current comment will automatically be preserved.

verify(option=’warn’)
Verify all values in the instance.

Parameters
option : str

Output verification option. Must be one of "fix", "silentfix", "ignore",
"warn", or "exception". May also be any combination of "fix"
or "silentfix" with "+ignore", +warn, or +exception" (e.g.
``"fix+warn"). See Verification options for more info.

160 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#True

PyFITS Documentation, Release 3.4

verify_checksum(blocking=’standard’)
Verify that the value in the CHECKSUM keyword matches the value calculated for the current HDU
CHECKSUM.

blocking
[str, optional] “standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

Returns
valid : int

• 0 - failure

• 1 - success

• 2 - no CHECKSUM keyword present

verify_datasum(blocking=’standard’)
Verify that the value in the DATASUM keyword matches the value calculated for the DATASUM of the
current HDU data.

blocking
[str, optional] “standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

Returns
valid : int

• 0 - failure

• 1 - success

• 2 - no DATASUM keyword present

writeto(name, output_verify=’exception’, clobber=False, checksum=False)
Works similarly to the normal writeto(), but prepends a default PrimaryHDU are required by extension
HDUs (which cannot stand on their own).

columns
The ColDefs objects describing the columns in this table.

size
Size (in bytes) of the data portion of the HDU.

TableHDU

class pyfits.TableHDU(data=None, header=None, name=None)
Bases: pyfits.hdu.table._TableBaseHDU

FITS ASCII table extension HDU class.

Iterates through the subclasses of _BaseHDU and uses that class’s match_header() method to determine which
subclass to instantiate.

It’s important to be aware that the class hierarchy is traversed in a depth-last order. Each match_header() should
identify an HDU type as uniquely as possible. Abstract types may choose to simply return False or raise
NotImplementedError to be skipped.

If any unexpected exceptions are raised while evaluating match_header(), the type is taken to be _Corrupted-
HDU.

1.9. Reference/API 161

PyFITS Documentation, Release 3.4

add_checksum(when=None, override_datasum=False, blocking=’standard’, check-
sum_keyword=’CHECKSUM’, datasum_keyword=’DATASUM’)

Add the CHECKSUM and DATASUM cards to this HDU with the values set to the checksum calculated for
the HDU and the data respectively. The addition of the DATASUM card may be overridden.

Parameters
when : str, optional

comment string for the cards; by default the comments will represent the time when the
checksum was calculated

override_datasum : bool, optional

add the CHECKSUM card only

blocking: str, optional

“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

checksum_keyword : str, optional

The name of the header keyword to store the checksum value in; this is typically
‘CHECKSUM’ per convention, but there exist use cases in which a different keyword
should be used

datasum_keyword : str, optional

See checksum_keyword

Notes

For testing purposes, first call add_datasum with a when argument, then call add_checksum with a
when argument and override_datasum set to True. This will provide consistent comments for both
cards and enable the generation of a CHECKSUM card with a consistent value.

add_datasum(when=None, blocking=’standard’, datasum_keyword=’DATASUM’)
Add the DATASUM card to this HDU with the value set to the checksum calculated for the data.

Parameters
when : str, optional

Comment string for the card that by default represents the time when the checksum was
calculated

blocking: str, optional

“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

datasum_keyword : str, optional

The name of the header keyword to store the datasum value in; this is typically ‘DATA-
SUM’ per convention, but there exist use cases in which a different keyword should be
used

Returns
checksum : int

The calculated datasum

Notes

For testing purposes, provide a when argument to enable the comment value in the card to remain consis-
tent. This will enable the generation of a CHECKSUM card with a consistent value.

162 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#True

PyFITS Documentation, Release 3.4

copy()
Make a copy of the table HDU, both header and data are copied.

filebytes()
Calculates and returns the number of bytes that this HDU will write to a file.

fileinfo()
Returns a dictionary detailing information about the locations of this HDU within any associated file.
The values are only valid after a read or write of the associated file with no intervening changes to the
HDUList.

Returns
dict or None

The dictionary details information about the locations of this HDU within an associated
file. Returns None when the HDU is not associated with a file.

Dictionary contents:

Key Value
file File object associated with the HDU
file-
mode

Mode in which the file was opened (readonly, copyonwrite, update,
append, ostream)

hdrLoc Starting byte location of header in file
datLoc Starting byte location of data block in file
datSpan Data size including padding

from_columns(columns, header=None, nrows=0, fill=False, **kwargs)
Given either a ColDefs object, a sequence of Column objects, or another table HDU or table data (a
FITS_rec or multi-field numpy.ndarray or numpy.recarray object, return a new table HDU of
the class this method was called on using the column definition from the input.

This is an alternative to the now deprecated new_table function, and otherwise accepts the same argu-
ments. See also FITS_rec.from_columns.

Parameters
columns : sequence of Column, ColDefs, or other

The columns from which to create the table data, or an object with a column-like
structure from which a ColDefs can be instantiated. This includes an existing
BinTableHDU or TableHDU , or a numpy.recarray to give some examples.

If these columns have data arrays attached that data may be used in initializing the new
table. Otherwise the input columns will be used as a template for a new table with the
requested number of rows.

header : Header

An optional Header object to instantiate the new HDU yet. Header keywords specif-
ically related to defining the table structure (such as the “TXXXn” keywords like
TTYPEn) will be overridden by the supplied column definitions, but all other infor-
mational and data model-specific keywords are kept.

nrows : int

Number of rows in the new table. If the input columns have data associated with them,
the size of the largest input column is used. Otherwise the default is 0.

fill : bool

If True, will fill all cells with zeros or blanks. If False, copy the data from input,
undefined cells will still be filled with zeros/blanks.

1.9. Reference/API 163

https://docs.python.org/2/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False

PyFITS Documentation, Release 3.4

Notes

Any additional keyword arguments accepted by the HDU class’s __init__ may also be passed in as
keyword arguments.

fromstring(data, checksum=False, ignore_missing_end=False, **kwargs)
Creates a new HDU object of the appropriate type from a string containing the HDU’s entire header and,
optionally, its data.

Note: When creating a new HDU from a string without a backing file object, the data of that HDU may be
read-only. It depends on whether the underlying string was an immutable Python str/bytes object, or some
kind of read-write memory buffer such as a memoryview.

Parameters
data : str, bytearray, memoryview, ndarray

A byte string containing the HDU’s header and data.

checksum : bool, optional

Check the HDU’s checksum and/or datasum.

ignore_missing_end : bool, optional

Ignore a missing end card in the header data. Note that without the end card the end of
the header may be ambiguous and resulted in a corrupt HDU. In this case the assump-
tion is that the first 2880 block that does not begin with valid FITS header data is the
beginning of the data.

kwargs : optional

May consist of additional keyword arguments specific to an HDU type–these corre-
spond to keywords recognized by the constructors of different HDU classes such as
PrimaryHDU , ImageHDU , or BinTableHDU . Any unrecognized keyword argu-
ments are simply ignored.

readfrom(fileobj, checksum=False, ignore_missing_end=False, **kwargs)
Read the HDU from a file. Normally an HDU should be opened with open() which reads the entire
HDU list in a FITS file. But this method is still provided for symmetry with writeto().

Parameters
fileobj : file object or file-like object

Input FITS file. The file’s seek pointer is assumed to be at the beginning of the HDU.

checksum : bool

If True, verifies that both DATASUM and CHECKSUM card values (when present in the
HDU header) match the header and data of all HDU’s in the file.

ignore_missing_end : bool

Do not issue an exception when opening a file that is missing an END card in the last
header.

req_cards(keyword, pos, test, fix_value, option, errlist)
Check the existence, location, and value of a required Card.

Parameters
keyword : str

The keyword to validate

pos : int, callable

164 Chapter 1. Introduction

https://docs.python.org/2/library/stdtypes.html#memoryview
https://docs.python.org/2/library/constants.html#True

PyFITS Documentation, Release 3.4

If an int, this specifies the exact location this card should have in the header. Remem-
ber that Python is zero-indexed, so this means pos=0 requires the card to be the first
card in the header. If given a callable, it should take one argument–the actual position
of the keyword–and return True or False. This can be used for custom evaluation.
For example if pos=lambda idx: idx > 10 this will check that the keyword’s
index is greater than 10.

test : callable

This should be a callable (generally a function) that is passed the value of the given
keyword and returns True or False. This can be used to validate the value associated
with the given keyword.

fix_value : str, int, float, complex, bool, None

A valid value for a FITS keyword to to use if the given test fails to replace an invalid
value. In other words, this provides a default value to use as a replacement if the key-
word’s current value is invalid. If None, there is no replacement value and the keyword
is unfixable.

option : str

Output verification option. Must be one of "fix", "silentfix", "ignore",
"warn", or "exception". May also be any combination of "fix"
or "silentfix" with "+ignore", +warn, or +exception" (e.g.
``"fix+warn"). See Verification options for more info.

errlist : list

A list of validation errors already found in the FITS file; this is used primarily for
the validation system to collect errors across multiple HDUs and multiple calls to
req_cards.

Notes

If pos=None, the card can be anywhere in the header. If the card does not exist, the new card will have
the fix_value as its value when created. Also check the card’s value by using the test argument.

run_option(option=’warn’, err_text=’‘, fix_text=’Fixed.’, fix=None, fixable=True)
Execute the verification with selected option.

update()
Update header keywords to reflect recent changes of columns.

update_ext_name(*args, **kwargs)
Deprecated since version 3.2: Use the .name attribute or Header.set instead.

Update the extension name associated with the HDU.

If the keyword already exists in the Header, it’s value and/or comment will be updated. If it does not exist,
a new card will be created and it will be placed before or after the specified location. If no before or
after is specified, it will be appended at the end.

Parameters
value : str

Value to be used for the new extension name

comment : str, optional

To be used for updating, default=None.

before : str or int, optional

1.9. Reference/API 165

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#None

PyFITS Documentation, Release 3.4

Name of the keyword, or index of the Card before which the new card will be placed in
the Header. The argument before takes precedence over after if both are specified.

after : str or int, optional

Name of the keyword, or index of the Card after which the new card will be placed in
the Header

savecomment : bool, optional

When True, preserve the current comment for an existing keyword. The argument
savecomment takes precedence over comment if both specified. If comment is not
specified then the current comment will automatically be preserved.

update_ext_version(*args, **kwargs)
Deprecated since version 3.2: Use the .ver attribute or Header.set instead.

Update the extension version associated with the HDU.

If the keyword already exists in the Header, it’s value and/or comment will be updated. If it does not exist,
a new card will be created and it will be placed before or after the specified location. If no before or
after is specified, it will be appended at the end.

Parameters
value : str

Value to be used for the new extension version

comment : str, optional

To be used for updating; default=None.

before : str or int, optional

Name of the keyword, or index of the Card before which the new card will be placed in
the Header. The argument before takes precedence over after if both are specified.

after : str or int, optional

Name of the keyword, or index of the Card after which the new card will be placed in
the Header.

savecomment : bool, optional

When True, preserve the current comment for an existing keyword. The argument
savecomment takes precedence over comment if both specified. If comment is not
specified then the current comment will automatically be preserved.

verify(option=’warn’)
Verify all values in the instance.

Parameters
option : str

Output verification option. Must be one of "fix", "silentfix", "ignore",
"warn", or "exception". May also be any combination of "fix"
or "silentfix" with "+ignore", +warn, or +exception" (e.g.
``"fix+warn"). See Verification options for more info.

verify_checksum(blocking=’standard’)
Verify that the value in the CHECKSUM keyword matches the value calculated for the current HDU
CHECKSUM.

blocking
[str, optional] “standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

166 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#True

PyFITS Documentation, Release 3.4

Returns
valid : int

• 0 - failure

• 1 - success

• 2 - no CHECKSUM keyword present

verify_datasum(blocking=’standard’)
Verify that the value in the DATASUM keyword matches the value calculated for the DATASUM of the
current HDU data.

blocking
[str, optional] “standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

Returns
valid : int

• 0 - failure

• 1 - success

• 2 - no DATASUM keyword present

writeto(name, output_verify=’exception’, clobber=False, checksum=False)
Works similarly to the normal writeto(), but prepends a default PrimaryHDU are required by extension
HDUs (which cannot stand on their own).

columns
The ColDefs objects describing the columns in this table.

size
Size (in bytes) of the data portion of the HDU.

Column

class pyfits.Column(name=None, format=None, unit=None, null=None, bscale=None, bzero=None,
disp=None, start=None, dim=None, array=None, ascii=None)

Bases: pyfits.util.NotifierMixin

Class which contains the definition of one column, e.g. ttype, tform, etc. and the array containing values
for the column.

Construct a Column by specifying attributes. All attributes except format can be optional; see Column
Creation and Creating an ASCII Table for more information regarding TFORM keyword.

Parameters
name : str, optional

column name, corresponding to TTYPE keyword

format : str

column format, corresponding to TFORM keyword

unit : str, optional

column unit, corresponding to TUNIT keyword

null : str, optional

null value, corresponding to TNULL keyword

1.9. Reference/API 167

PyFITS Documentation, Release 3.4

bscale : int-like, optional

bscale value, corresponding to TSCAL keyword

bzero : int-like, optional

bzero value, corresponding to TZERO keyword

disp : str, optional

display format, corresponding to TDISP keyword

start : int, optional

column starting position (ASCII table only), corresponding to TBCOL keyword

dim : str, optional

column dimension corresponding to TDIM keyword

array : iterable, optional

a list, numpy.ndarray (or other iterable that can be used to initialize an ndarray)
providing initial data for this column. The array will be automatically converted, if
possible, to the data format of the column. In the case were non-trivial bscale and/or
bzero arguments are given, the values in the array must be the physical values–that is,
the values of column as if the scaling has already been applied (the array stored on the
column object will then be converted back to its storage values).

ascii : bool, optional

set True if this describes a column for an ASCII table; this may be required to disam-
biguate the column format

copy()
Return a copy of this Column.

array
The Numpy ndarray associated with this Column.

If the column was instantiated with an array passed to the array argument, this will return that array.
However, if the column is later added to a table, such as via BinTableHDU.from_columns as is
typically the case, this attribute will be updated to reference the associated field in the table, which may no
longer be the same array.

ascii
Whether this Column represents an column in an ASCII table.

ColDefs

class pyfits.ColDefs(input, tbtype=None, ascii=False)
Bases: pyfits.util.NotifierMixin

Column definitions class.

It has attributes corresponding to the Column attributes (e.g. ColDefs has the attribute nameswhile Column
has name). Each attribute in ColDefs is a list of corresponding attribute values from all Column objects.

Parameters
input : sequence of Column, ColDefs, other

An existing table HDU, an existing ColDefs, or any multi-field Numpy array or
numpy.recarray.

168 Chapter 1. Introduction

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/2/library/constants.html#True
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray

PyFITS Documentation, Release 3.4

(Deprecated) tbtype : str, optional

which table HDU, "BinTableHDU" (default) or "TableHDU" (text table). Now
ColDefs for a normal (binary) table by default, but converted automatically to ASCII
table ColDefs in the appropriate contexts (namely, when creating an ASCII table).

ascii : bool

add_col(column)
Append one Column to the column definition.

Warning: New in pyfits 2.3: This function appends the new column to the ColDefs object in place.
Prior to pyfits 2.3, this function returned a new ColDefs with the new column at the end.

change_attrib(col_name, attrib, new_value)
Change an attribute (in the KEYWORD_ATTRIBUTES list) of a Column.

Parameters
col_name : str or int

The column name or index to change

attrib : str

The attribute name

new_value : object

The new value for the attribute

change_name(col_name, new_name)
Change a Column‘s name.

Parameters
col_name : str

The current name of the column

new_name : str

The new name of the column

change_unit(col_name, new_unit)
Change a Column‘s unit.

Parameters
col_name : str or int

The column name or index

new_unit : str

The new unit for the column

del_col(col_name)
Delete (the definition of) one Column.

col_name
[str or int] The column’s name or index

info(attrib=’all’, output=None)
Get attribute(s) information of the column definition.

1.9. Reference/API 169

PyFITS Documentation, Release 3.4

Parameters
attrib : str

Can be one or more of the attributes listed in pyfits.column.
KEYWORD_ATTRIBUTES. The default is "all" which will print out all attributes.
It forgives plurals and blanks. If there are two or more attribute names, they must be
separated by comma(s).

output : file, optional

File-like object to output to. Outputs to stdout by default. If False, returns the at-
tributes as a dict instead.

Notes

This function doesn’t return anything by default; it just prints to stdout.

FITS_rec

class pyfits.FITS_rec
Bases: numpy.recarray

FITS record array class.

FITS_rec is the data part of a table HDU’s data part. This is a layer over the recarray, so we can deal with
scaled columns.

It inherits all of the standard methods from numpy.ndarray.

Construct a FITS record array from a recarray.

copy(order=’C’)
The Numpy documentation lies; numpy.ndarray.copy is not equivalent to numpy.copy. Differ-
ences include that it re-views the copied array as self’s ndarray subclass, as though it were taking a slice;
this means __array_finalize__ is called and the copy shares all the array attributes (including
._converted!). So we need to make a deep copy of all those attributes so that the two arrays truly do
not share any data.

field(key)
A view of a Column‘s data as an array.

classmethod from_columns(columns, nrows=0, fill=False)
Given a ColDefs object of unknown origin, initialize a new FITS_rec object.

Note: This was originally part of the new_table function in the table module but was moved into a
class method since most of its functionality always had more to do with initializing a FITS_rec object
than anything else, and much of it also overlapped with FITS_rec._scale_back.

Parameters
columns : sequence of Column or a ColDefs

The columns from which to create the table data. If these columns have data arrays
attached that data may be used in initializing the new table. Otherwise the input columns
will be used as a template for a new table with the requested number of rows.

nrows : int

Number of rows in the new table. If the input columns have data associated with them,
the size of the largest input column is used. Otherwise the default is 0.

170 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/stdtypes.html#dict
https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.copy.html#numpy.ndarray.copy
https://docs.scipy.org/doc/numpy/reference/generated/numpy.copy.html#numpy.copy

PyFITS Documentation, Release 3.4

fill : bool

If True, will fill all cells with zeros or blanks. If False, copy the data from input,
undefined cells will still be filled with zeros/blanks.

columns
A user-visible accessor for the coldefs.

See https://aeon.stsci.edu/ssb/trac/pyfits/ticket/44

formats
List of column FITS foramts.

names
List of column names.

FITS_record

class pyfits.FITS_record(input, row=0, start=None, end=None, step=None, base=None)
Bases: object

FITS record class.

FITS_record is used to access records of the FITS_rec object. This will allow us to deal with scaled
columns. It also handles conversion/scaling of columns in ASCII tables. The FITS_record class expects a
FITS_rec object as input.

Parameters
input : array

The array to wrap.

row : int, optional

The starting logical row of the array.

start : int, optional

The starting column in the row associated with this object. Used for subsetting the
columns of the FITS_rec object.

end : int, optional

The ending column in the row associated with this object. Used for subsetting the
columns of the FITS_rec object.

field(field)
Get the field data of the record.

setfield(field, value)
Set the field data of the record.

Table Functions

new_table()

pyfits.new_table(*args, **kwargs)
Deprecated since version 3.3: Use BinTableHDU.from_columns() for new BINARY tables or
TableHDU.from_columns() for new ASCII tables instead.

Create a new table from the input column definitions.

1.9. Reference/API 171

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://aeon.stsci.edu/ssb/trac/pyfits/ticket/44
https://docs.python.org/2/library/functions.html#object

PyFITS Documentation, Release 3.4

Warning: Creating a new table using this method creates an in-memory copy of all the column arrays in the
input. This is because if they are separate arrays they must be combined into a single contiguous array.

If the column data is already in a single contiguous array (such as an existing record array) it may be better to
create a BinTableHDU instance directly. See the PyFITS documentation for more details.

Parameters
input : sequence of Column or a ColDefs

The data to create a table from

header : Header instance

Header to be used to populate the non-required keywords

nrows : int

Number of rows in the new table

fill : bool

If True, will fill all cells with zeros or blanks. If False, copy the data from input,
undefined cells will still be filled with zeros/blanks.

tbtype : str or type

Table type to be created (BinTableHDU or TableHDU) or the class name as a string.
Currently only BinTableHDU and TableHDU (ASCII tables) are supported.

tabledump()

pyfits.tabledump(filename, datafile=None, cdfile=None, hfile=None, ext=1, clobber=False)
Dump a table HDU to a file in ASCII format. The table may be dumped in three separate files, one containing
column definitions, one containing header parameters, and one for table data.

Parameters
filename : file path, file object or file-like object

Input fits file.

datafile : file path, file object or file-like object, optional

Output data file. The default is the root name of the input fits file appended with an
underscore, followed by the extension number (ext), followed by the extension .txt.

cdfile : file path, file object or file-like object, optional

Output column definitions file. The default is None, no column definitions output is
produced.

hfile : file path, file object or file-like object, optional

Output header parameters file. The default is None, no header parameters output is
produced.

ext : int

The number of the extension containing the table HDU to be dumped.

clobber : bool

Overwrite the output files if they exist.

172 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None

PyFITS Documentation, Release 3.4

Notes

The primary use for the tabledump function is to allow editing in a standard text editor of the table data and
parameters. The tcreate function can be used to reassemble the table from the three ASCII files.

• datafile: Each line of the data file represents one row of table data. The data is output one column at a
time in column order. If a column contains an array, each element of the column array in the current row
is output before moving on to the next column. Each row ends with a new line.

Integer data is output right-justified in a 21-character field followed by a blank. Floating point data is
output right justified using ‘g’ format in a 21-character field with 15 digits of precision, followed by a
blank. String data that does not contain whitespace is output left-justified in a field whose width matches
the width specified in the TFORM header parameter for the column, followed by a blank. When the string
data contains whitespace characters, the string is enclosed in quotation marks (""). For the last data
element in a row, the trailing blank in the field is replaced by a new line character.

For column data containing variable length arrays (‘P’ format), the array data is preceded by the string
'VLA_Length= ' and the integer length of the array for that row, left-justified in a 21-character field,
followed by a blank.

Note: This format does not support variable length arrays using the (‘Q’ format) due to difficult to
overcome ambiguities. What this means is that this file format cannot support VLA columns in tables
stored in files that are over 2 GB in size.

For column data representing a bit field (‘X’ format), each bit value in the field is output right-justified in
a 21-character field as 1 (for true) or 0 (for false).

• cdfile: Each line of the column definitions file provides the definitions for one column in the table. The
line is broken up into 8, sixteen-character fields. The first field provides the column name (TTYPEn).
The second field provides the column format (TFORMn). The third field provides the display format
(TDISPn). The fourth field provides the physical units (TUNITn). The fifth field provides the dimensions
for a multidimensional array (TDIMn). The sixth field provides the value that signifies an undefined value
(TNULLn). The seventh field provides the scale factor (TSCALn). The eighth field provides the offset
value (TZEROn). A field value of "" is used to represent the case where no value is provided.

• hfile: Each line of the header parameters file provides the definition of a single HDU header card as
represented by the card image.

tableload()

pyfits.tableload(datafile, cdfile, hfile=None)
Create a table from the input ASCII files. The input is from up to three separate files, one containing column
definitions, one containing header parameters, and one containing column data. The header parameters file is
not required. When the header parameters file is absent a minimal header is constructed.

Parameters
datafile : file path, file object or file-like object

Input data file containing the table data in ASCII format.

cdfile : file path, file object or file-like object

Input column definition file containing the names, formats, display formats, physical
units, multidimensional array dimensions, undefined values, scale factors, and offsets
associated with the columns in the table.

hfile : file path, file object or file-like object, optional

1.9. Reference/API 173

PyFITS Documentation, Release 3.4

Input parameter definition file containing the header parameter definitions to be associ-
ated with the table. If None, a minimal header is constructed.

Notes

The primary use for the tableload function is to allow the input of ASCII data that was edited in a standard
text editor of the table data and parameters. The tabledump function can be used to create the initial ASCII files.

• datafile: Each line of the data file represents one row of table data. The data is output one column at a
time in column order. If a column contains an array, each element of the column array in the current row
is output before moving on to the next column. Each row ends with a new line.

Integer data is output right-justified in a 21-character field followed by a blank. Floating point data is
output right justified using ‘g’ format in a 21-character field with 15 digits of precision, followed by a
blank. String data that does not contain whitespace is output left-justified in a field whose width matches
the width specified in the TFORM header parameter for the column, followed by a blank. When the string
data contains whitespace characters, the string is enclosed in quotation marks (""). For the last data
element in a row, the trailing blank in the field is replaced by a new line character.

For column data containing variable length arrays (‘P’ format), the array data is preceded by the string
'VLA_Length= ' and the integer length of the array for that row, left-justified in a 21-character field,
followed by a blank.

Note: This format does not support variable length arrays using the (‘Q’ format) due to difficult to
overcome ambiguities. What this means is that this file format cannot support VLA columns in tables
stored in files that are over 2 GB in size.

For column data representing a bit field (‘X’ format), each bit value in the field is output right-justified in
a 21-character field as 1 (for true) or 0 (for false).

• cdfile: Each line of the column definitions file provides the definitions for one column in the table. The
line is broken up into 8, sixteen-character fields. The first field provides the column name (TTYPEn).
The second field provides the column format (TFORMn). The third field provides the display format
(TDISPn). The fourth field provides the physical units (TUNITn). The fifth field provides the dimensions
for a multidimensional array (TDIMn). The sixth field provides the value that signifies an undefined value
(TNULLn). The seventh field provides the scale factor (TSCALn). The eighth field provides the offset
value (TZEROn). A field value of "" is used to represent the case where no value is provided.

• hfile: Each line of the header parameters file provides the definition of a single HDU header card as
represented by the card image.

1.9.7 Images

ImageHDU

class pyfits.ImageHDU(data=None, header=None, name=None, do_not_scale_image_data=False,
uint=True, scale_back=None)

Bases: pyfits.hdu.image._ImageBaseHDU, pyfits.hdu.base.ExtensionHDU

FITS image extension HDU class.

Construct an image HDU.

Parameters
data : array

The data in the HDU.

174 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#None

PyFITS Documentation, Release 3.4

header : Header instance

The header to be used (as a template). If header is None, a minimal header will be
provided.

name : str, optional

The name of the HDU, will be the value of the keyword EXTNAME.

do_not_scale_image_data : bool, optional

If True, image data is not scaled using BSCALE/BZERO values when read. (default:
False)

uint : bool, optional

Interpret signed integer data where BZERO is the central value and BSCALE == 1 as
unsigned integer data. For example, int16 data with BZERO = 32768 and BSCALE
= 1 would be treated as uint16 data. (default: True)

scale_back : bool, optional

If True, when saving changes to a file that contained scaled image data, restore the
data to the original type and reapply the original BSCALE/BZERO values. This could
lead to loss of accuracy if scaling back to integer values after performing floating point
operations on the data. Pseudo-unsigned integers are automatically rescaled unless
scale_back is explicitly set to False. (default: None)

add_checksum(when=None, override_datasum=False, blocking=’standard’, check-
sum_keyword=’CHECKSUM’, datasum_keyword=’DATASUM’)

Add the CHECKSUM and DATASUM cards to this HDU with the values set to the checksum calculated for
the HDU and the data respectively. The addition of the DATASUM card may be overridden.

Parameters
when : str, optional

comment string for the cards; by default the comments will represent the time when the
checksum was calculated

override_datasum : bool, optional

add the CHECKSUM card only

blocking: str, optional

“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

checksum_keyword : str, optional

The name of the header keyword to store the checksum value in; this is typically
‘CHECKSUM’ per convention, but there exist use cases in which a different keyword
should be used

datasum_keyword : str, optional

See checksum_keyword

Notes

For testing purposes, first call add_datasum with a when argument, then call add_checksum with a
when argument and override_datasum set to True. This will provide consistent comments for both
cards and enable the generation of a CHECKSUM card with a consistent value.

add_datasum(when=None, blocking=’standard’, datasum_keyword=’DATASUM’)
Add the DATASUM card to this HDU with the value set to the checksum calculated for the data.

1.9. Reference/API 175

https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#True

PyFITS Documentation, Release 3.4

Parameters
when : str, optional

Comment string for the card that by default represents the time when the checksum was
calculated

blocking: str, optional

“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

datasum_keyword : str, optional

The name of the header keyword to store the datasum value in; this is typically ‘DATA-
SUM’ per convention, but there exist use cases in which a different keyword should be
used

Returns
checksum : int

The calculated datasum

Notes

For testing purposes, provide a when argument to enable the comment value in the card to remain consis-
tent. This will enable the generation of a CHECKSUM card with a consistent value.

copy()
Make a copy of the HDU, both header and data are copied.

filebytes()
Calculates and returns the number of bytes that this HDU will write to a file.

fileinfo()
Returns a dictionary detailing information about the locations of this HDU within any associated file.
The values are only valid after a read or write of the associated file with no intervening changes to the
HDUList.

Returns
dict or None

The dictionary details information about the locations of this HDU within an associated
file. Returns None when the HDU is not associated with a file.

Dictionary contents:

Key Value
file File object associated with the HDU
file-
mode

Mode in which the file was opened (readonly, copyonwrite, update,
append, ostream)

hdrLoc Starting byte location of header in file
datLoc Starting byte location of data block in file
datSpan Data size including padding

fromstring(data, checksum=False, ignore_missing_end=False, **kwargs)
Creates a new HDU object of the appropriate type from a string containing the HDU’s entire header and,
optionally, its data.

Note: When creating a new HDU from a string without a backing file object, the data of that HDU may be
read-only. It depends on whether the underlying string was an immutable Python str/bytes object, or some
kind of read-write memory buffer such as a memoryview.

Parameters
data : str, bytearray, memoryview, ndarray

176 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/stdtypes.html#memoryview

PyFITS Documentation, Release 3.4

A byte string containing the HDU’s header and data.

checksum : bool, optional

Check the HDU’s checksum and/or datasum.

ignore_missing_end : bool, optional

Ignore a missing end card in the header data. Note that without the end card the end of
the header may be ambiguous and resulted in a corrupt HDU. In this case the assump-
tion is that the first 2880 block that does not begin with valid FITS header data is the
beginning of the data.

kwargs : optional

May consist of additional keyword arguments specific to an HDU type–these corre-
spond to keywords recognized by the constructors of different HDU classes such as
PrimaryHDU , ImageHDU , or BinTableHDU . Any unrecognized keyword argu-
ments are simply ignored.

readfrom(fileobj, checksum=False, ignore_missing_end=False, **kwargs)
Read the HDU from a file. Normally an HDU should be opened with open() which reads the entire
HDU list in a FITS file. But this method is still provided for symmetry with writeto().

Parameters
fileobj : file object or file-like object

Input FITS file. The file’s seek pointer is assumed to be at the beginning of the HDU.

checksum : bool

If True, verifies that both DATASUM and CHECKSUM card values (when present in the
HDU header) match the header and data of all HDU’s in the file.

ignore_missing_end : bool

Do not issue an exception when opening a file that is missing an END card in the last
header.

req_cards(keyword, pos, test, fix_value, option, errlist)
Check the existence, location, and value of a required Card.

Parameters
keyword : str

The keyword to validate

pos : int, callable

If an int, this specifies the exact location this card should have in the header. Remem-
ber that Python is zero-indexed, so this means pos=0 requires the card to be the first
card in the header. If given a callable, it should take one argument–the actual position
of the keyword–and return True or False. This can be used for custom evaluation.
For example if pos=lambda idx: idx > 10 this will check that the keyword’s
index is greater than 10.

test : callable

This should be a callable (generally a function) that is passed the value of the given
keyword and returns True or False. This can be used to validate the value associated
with the given keyword.

fix_value : str, int, float, complex, bool, None

1.9. Reference/API 177

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False

PyFITS Documentation, Release 3.4

A valid value for a FITS keyword to to use if the given test fails to replace an invalid
value. In other words, this provides a default value to use as a replacement if the key-
word’s current value is invalid. If None, there is no replacement value and the keyword
is unfixable.

option : str

Output verification option. Must be one of "fix", "silentfix", "ignore",
"warn", or "exception". May also be any combination of "fix"
or "silentfix" with "+ignore", +warn, or +exception" (e.g.
``"fix+warn"). See Verification options for more info.

errlist : list

A list of validation errors already found in the FITS file; this is used primarily for
the validation system to collect errors across multiple HDUs and multiple calls to
req_cards.

Notes

If pos=None, the card can be anywhere in the header. If the card does not exist, the new card will have
the fix_value as its value when created. Also check the card’s value by using the test argument.

run_option(option=’warn’, err_text=’‘, fix_text=’Fixed.’, fix=None, fixable=True)
Execute the verification with selected option.

scale(type=None, option=’old’, bscale=1, bzero=0)
Scale image data by using BSCALE/BZERO.

Call to this method will scale data and update the keywords of BSCALE and BZERO in the HDU’s header.
This method should only be used right before writing to the output file, as the data will be scaled and is
therefore not very usable after the call.

Parameters
type : str, optional

destination data type, use a string representing a numpy dtype name, (e.g. 'uint8',
'int16', 'float32' etc.). If is None, use the current data type.

option : str

How to scale the data: if "old", use the original BSCALE and BZERO values when the
data was read/created. If "minmax", use the minimum and maximum of the data to
scale. The option will be overwritten by any user specified bscale/bzero values.

bscale, bzero : int, optional

User-specified BSCALE and BZERO values

update_ext_name(*args, **kwargs)
Deprecated since version 3.2: Use the .name attribute or Header.set instead.

Update the extension name associated with the HDU.

If the keyword already exists in the Header, it’s value and/or comment will be updated. If it does not exist,
a new card will be created and it will be placed before or after the specified location. If no before or
after is specified, it will be appended at the end.

Parameters
value : str

Value to be used for the new extension name

comment : str, optional

178 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None

PyFITS Documentation, Release 3.4

To be used for updating, default=None.

before : str or int, optional

Name of the keyword, or index of the Card before which the new card will be placed in
the Header. The argument before takes precedence over after if both are specified.

after : str or int, optional

Name of the keyword, or index of the Card after which the new card will be placed in
the Header

savecomment : bool, optional

When True, preserve the current comment for an existing keyword. The argument
savecomment takes precedence over comment if both specified. If comment is not
specified then the current comment will automatically be preserved.

update_ext_version(*args, **kwargs)
Deprecated since version 3.2: Use the .ver attribute or Header.set instead.

Update the extension version associated with the HDU.

If the keyword already exists in the Header, it’s value and/or comment will be updated. If it does not exist,
a new card will be created and it will be placed before or after the specified location. If no before or
after is specified, it will be appended at the end.

Parameters
value : str

Value to be used for the new extension version

comment : str, optional

To be used for updating; default=None.

before : str or int, optional

Name of the keyword, or index of the Card before which the new card will be placed in
the Header. The argument before takes precedence over after if both are specified.

after : str or int, optional

Name of the keyword, or index of the Card after which the new card will be placed in
the Header.

savecomment : bool, optional

When True, preserve the current comment for an existing keyword. The argument
savecomment takes precedence over comment if both specified. If comment is not
specified then the current comment will automatically be preserved.

update_header()
Update the header keywords to agree with the data.

verify(option=’warn’)
Verify all values in the instance.

Parameters
option : str

Output verification option. Must be one of "fix", "silentfix", "ignore",
"warn", or "exception". May also be any combination of "fix"
or "silentfix" with "+ignore", +warn, or +exception" (e.g.
``"fix+warn"). See Verification options for more info.

1.9. Reference/API 179

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#True

PyFITS Documentation, Release 3.4

verify_checksum(blocking=’standard’)
Verify that the value in the CHECKSUM keyword matches the value calculated for the current HDU
CHECKSUM.

blocking
[str, optional] “standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

Returns
valid : int

• 0 - failure

• 1 - success

• 2 - no CHECKSUM keyword present

verify_datasum(blocking=’standard’)
Verify that the value in the DATASUM keyword matches the value calculated for the DATASUM of the
current HDU data.

blocking
[str, optional] “standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

Returns
valid : int

• 0 - failure

• 1 - success

• 2 - no DATASUM keyword present

writeto(name, output_verify=’exception’, clobber=False, checksum=False)
Works similarly to the normal writeto(), but prepends a default PrimaryHDU are required by extension
HDUs (which cannot stand on their own).

data
Image/array data as a ndarray.

Please remember that the order of axes on an Numpy array are opposite of the order specified in the FITS
file. For example for a 2D image the “rows” or y-axis are the first dimension, and the “columns” or x-axis
are the second dimension.

If the data is scaled using the BZERO and BSCALE parameters, this attribute returns the data scaled to its
physical values unless the file was opened with do_not_scale_image_data=True.

section
Access a section of the image array without loading the entire array into memory. The Section object
returned by this attribute is not meant to be used directly by itself. Rather, slices of the section return the
appropriate slice of the data, and loads only that section into memory.

Sections are mostly obsoleted by memmap support, but should still be used to deal with very large scaled
images. See the Data Sections section of the PyFITS documentation for more details.

shape
Shape of the image array–should be equivalent to self.data.shape.

size
Size (in bytes) of the data portion of the HDU.

180 Chapter 1. Introduction

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

PyFITS Documentation, Release 3.4

CompImageHDU

class pyfits.CompImageHDU(data=None, header=None, name=None, compression_type=’RICE_1’,
tile_size=None, hcomp_scale=0, hcomp_smooth=0, quantize_level=16.0,
quantize_method=-1, dither_seed=0, do_not_scale_image_data=False,
uint=False, scale_back=False, **kwargs)

Bases: pyfits.hdu.table.BinTableHDU

Compressed Image HDU class.

Parameters
data : array, optional

Uncompressed image data

header : Header instance, optional

Header to be associated with the image; when reading the HDU from a file
(data=DELAYED), the header read from the file

name : str, optional

The EXTNAME value; if this value is None, then the name from the input image header
will be used; if there is no name in the input image header then the default name
COMPRESSED_IMAGE is used.

compression_type : str, optional

Compression algorithm: one of 'RICE_1', 'RICE_ONE', 'PLIO_1', 'GZIP_1',
'GZIP_2', 'HCOMPRESS_1'

tile_size : int, optional

Compression tile sizes. Default treats each row of image as a tile.

hcomp_scale : float, optional

HCOMPRESS scale parameter

hcomp_smooth : float, optional

HCOMPRESS smooth parameter

quantize_level : float, optional

Floating point quantization level; see note below

quantize_method : int, optional

Floating point quantization dithering method; can be either NO_DITHER (-1),
SUBTRACTIVE_DITHER_1 (1; default), or SUBTRACTIVE_DITHER_2 (2); see
note below

dither_seed : int, optional

Random seed to use for dithering; can be either an integer in the range 1 to 1000 (inclu-
sive), DITHER_SEED_CLOCK (0; default), or DITHER_SEED_CHECKSUM (-1); see
note below

Notes

The pyfits module supports 2 methods of image compression.

1. The entire FITS file may be externally compressed with the gzip or pkzip utility programs, producing a *.
gz or *.zip file, respectively. When reading compressed files of this type, PyFITS first uncompresses the
entire file into a temporary file before performing the requested read operations. The astropy.io.fits package

1.9. Reference/API 181

https://docs.python.org/2/library/constants.html#None

PyFITS Documentation, Release 3.4

does not support writing to these types of compressed files. This type of compression is supported in the
_File class, not in the CompImageHDU class. The file compression type is recognized by the .gz or
.zip file name extension.

2. The CompImageHDU class supports the FITS tiled image compression convention in which the image is
subdivided into a grid of rectangular tiles, and each tile of pixels is individually compressed. The details
of this FITS compression convention are described at the FITS Support Office web site. Basically, the
compressed image tiles are stored in rows of a variable length array column in a FITS binary table. The
pyfits module recognizes that this binary table extension contains an image and treats it as if it were an
image extension. Under this tile-compression format, FITS header keywords remain uncompressed. At
this time, pyfits does not support the ability to extract and uncompress sections of the image without having
to uncompress the entire image.

The pyfits module supports 3 general-purpose compression algorithms plus one other special-purpose compres-
sion technique that is designed for data masks with positive integer pixel values. The 3 general purpose algo-
rithms are GZIP, Rice, and HCOMPRESS, and the special-purpose technique is the IRAF pixel list compression
technique (PLIO). The compression_type parameter defines the compression algorithm to be used.

The FITS image can be subdivided into any desired rectangular grid of compression tiles. With the GZIP, Rice,
and PLIO algorithms, the default is to take each row of the image as a tile. The HCOMPRESS algorithm is
inherently 2-dimensional in nature, so the default in this case is to take 16 rows of the image per tile. In most
cases, it makes little difference what tiling pattern is used, so the default tiles are usually adequate. In the case of
very small images, it could be more efficient to compress the whole image as a single tile. Note that the image
dimensions are not required to be an integer multiple of the tile dimensions; if not, then the tiles at the edges
of the image will be smaller than the other tiles. The tile_size parameter may be provided as a list of tile
sizes, one for each dimension in the image. For example a tile_size value of [100,100] would divide a
300 X 300 image into 9 100 X 100 tiles.

The 4 supported image compression algorithms are all ‘lossless’ when applied to integer FITS images; the pixel
values are preserved exactly with no loss of information during the compression and uncompression process. In
addition, the HCOMPRESS algorithm supports a ‘lossy’ compression mode that will produce larger amount of
image compression. This is achieved by specifying a non-zero value for the hcomp_scale parameter. Since
the amount of compression that is achieved depends directly on the RMS noise in the image, it is usually more
convenient to specify the hcomp_scale factor relative to the RMS noise. Setting hcomp_scale = 2.5
means use a scale factor that is 2.5 times the calculated RMS noise in the image tile. In some cases it may be
desirable to specify the exact scaling to be used, instead of specifying it relative to the calculated noise value.
This may be done by specifying the negative of the desired scale value (typically in the range -2 to -100).

Very high compression factors (of 100 or more) can be achieved by using large hcomp_scale values, however,
this can produce undesirable ‘blocky’ artifacts in the compressed image. A variation of the HCOMPRESS
algorithm (called HSCOMPRESS) can be used in this case to apply a small amount of smoothing of the image
when it is uncompressed to help cover up these artifacts. This smoothing is purely cosmetic and does not cause
any significant change to the image pixel values. Setting the hcomp_smooth parameter to 1 will engage the
smoothing algorithm.

Floating point FITS images (which have BITPIX = -32 or -64) usually contain too much ‘noise’ in the least
significant bits of the mantissa of the pixel values to be effectively compressed with any lossless algorithm.
Consequently, floating point images are first quantized into scaled integer pixel values (and thus throwing away
much of the noise) before being compressed with the specified algorithm (either GZIP, RICE, or HCOMPRESS).
This technique produces much higher compression factors than simply using the GZIP utility to externally
compress the whole FITS file, but it also means that the original floating point value pixel values are not exactly
preserved. When done properly, this integer scaling technique will only discard the insignificant noise while
still preserving all the real information in the image. The amount of precision that is retained in the pixel values
is controlled by the quantize_level parameter. Larger values will result in compressed images whose
pixels more closely match the floating point pixel values, but at the same time the amount of compression that
is achieved will be reduced. Users should experiment with different values for this parameter to determine the
optimal value that preserves all the useful information in the image, without needlessly preserving all the ‘noise’

182 Chapter 1. Introduction

http://fits.gsfc.nasa.gov/registry/tilecompression.html

PyFITS Documentation, Release 3.4

which will hurt the compression efficiency.

The default value for the quantize_level scale factor is 16, which means that scaled integer pixel values
will be quantized such that the difference between adjacent integer values will be 1/16th of the noise level in
the image background. An optimized algorithm is used to accurately estimate the noise in the image. As an
example, if the RMS noise in the background pixels of an image = 32.0, then the spacing between adjacent
scaled integer pixel values will equal 2.0 by default. Note that the RMS noise is independently calculated for
each tile of the image, so the resulting integer scaling factor may fluctuate slightly for each tile. In some cases,
it may be desirable to specify the exact quantization level to be used, instead of specifying it relative to the
calculated noise value. This may be done by specifying the negative of desired quantization level for the value
of quantize_level. In the previous example, one could specify quantize_level = -2.0 so that the
quantized integer levels differ by 2.0. Larger negative values for quantize_level means that the levels are
more coarsely-spaced, and will produce higher compression factors.

The quantization algorithm can also apply one of two random dithering methods in order to reduce
bias in the measured intensity of background regions. The default method, specified with the constant
SUBTRACTIVE_DITHER_1 adds dithering to the zero-point of the quantization array itself rather than adding
noise to the actual image. The random noise is added on a pixel-by-pixel basis, so in order restore each pixel
from its integer value to its floating point value it is necessary to replay the same sequence of random numbers
for each pixel (see below). The other method, SUBTRACTIVE_DITHER_2, is exactly like the first except
that before dithering any pixel with a floating point value of 0.0 is replaced with the special integer value
-2147483647. When the image is uncompressed, pixels with this value are restored back to 0.0 exactly.
Finally, a value of NO_DITHER disables dithering entirely.

As mentioned above, when using the subtractive dithering algorithm it is necessary to be able to generate a
(pseudo-)random sequence of noise for each pixel, and replay that same sequence upon decompressing. To
facilitate this, a random seed between 1 and 10000 (inclusive) is used to seed a random number generator,
and that seed is stored in the ZDITHER0 keyword in the header of the compressed HDU. In order to use that
seed to generate the same sequence of random numbers the same random number generator must be used at
compression and decompression time; for that reason the tiled image convention provides an implementation
of a very simple pseudo-random number generator. The seed itself can be provided in one of three ways,
controllable by the dither_seed argument: It may be specified manually, or it may be generated arbitrarily
based on the system’s clock (DITHER_SEED_CLOCK) or based on a checksum of the pixels in the image’s first
tile (DITHER_SEED_CHECKSUM). The clock-based method is the default, and is sufficient to ensure that the
value is reasonably “arbitrary” and that the same seed is unlikely to be generated sequentially. The checksum
method, on the other hand, ensures that the same seed is used every time for a specific image. This is particularly
useful for software testing as it ensures that the same image will always use the same seed.

add_checksum(when=None, override_datasum=False, blocking=’standard’, check-
sum_keyword=’CHECKSUM’, datasum_keyword=’DATASUM’)

Add the CHECKSUM and DATASUM cards to this HDU with the values set to the checksum calculated for
the HDU and the data respectively. The addition of the DATASUM card may be overridden.

Parameters
when : str, optional

comment string for the cards; by default the comments will represent the time when the
checksum was calculated

override_datasum : bool, optional

add the CHECKSUM card only

blocking: str, optional

“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

checksum_keyword : str, optional

1.9. Reference/API 183

PyFITS Documentation, Release 3.4

The name of the header keyword to store the checksum value in; this is typically
‘CHECKSUM’ per convention, but there exist use cases in which a different keyword
should be used

datasum_keyword : str, optional

See checksum_keyword

Notes

For testing purposes, first call add_datasum with a when argument, then call add_checksum with a
when argument and override_datasum set to True. This will provide consistent comments for both
cards and enable the generation of a CHECKSUM card with a consistent value.

add_datasum(when=None, blocking=’standard’, datasum_keyword=’DATASUM’)
Add the DATASUM card to this HDU with the value set to the checksum calculated for the data.

Parameters
when : str, optional

Comment string for the card that by default represents the time when the checksum was
calculated

blocking: str, optional

“standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

datasum_keyword : str, optional

The name of the header keyword to store the datasum value in; this is typically ‘DATA-
SUM’ per convention, but there exist use cases in which a different keyword should be
used

Returns
checksum : int

The calculated datasum

Notes

For testing purposes, provide a when argument to enable the comment value in the card to remain consis-
tent. This will enable the generation of a CHECKSUM card with a consistent value.

copy()
Make a copy of the table HDU, both header and data are copied.

dump(datafile=None, cdfile=None, hfile=None, clobber=False)
Dump the table HDU to a file in ASCII format. The table may be dumped in three separate files, one
containing column definitions, one containing header parameters, and one for table data.

Parameters
datafile : file path, file object or file-like object, optional

Output data file. The default is the root name of the fits file associated with this HDU
appended with the extension .txt.

cdfile : file path, file object or file-like object, optional

Output column definitions file. The default is None, no column definitions output is
produced.

hfile : file path, file object or file-like object, optional

Output header parameters file. The default is None, no header parameters output is
produced.

184 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None

PyFITS Documentation, Release 3.4

clobber : bool

Overwrite the output files if they exist.

Notes

The primary use for the dump method is to allow viewing and editing the table data and parameters in a
standard text editor. The load method can be used to create a new table from the three plain text (ASCII)
files.

• datafile: Each line of the data file represents one row of table data. The data is output one column at
a time in column order. If a column contains an array, each element of the column array in the current
row is output before moving on to the next column. Each row ends with a new line.

Integer data is output right-justified in a 21-character field followed by a blank. Floating point data
is output right justified using ‘g’ format in a 21-character field with 15 digits of precision, followed
by a blank. String data that does not contain whitespace is output left-justified in a field whose width
matches the width specified in the TFORM header parameter for the column, followed by a blank.
When the string data contains whitespace characters, the string is enclosed in quotation marks ("").
For the last data element in a row, the trailing blank in the field is replaced by a new line character.

For column data containing variable length arrays (‘P’ format), the array data is preceded by the string
'VLA_Length= ' and the integer length of the array for that row, left-justified in a 21-character
field, followed by a blank.

Note: This format does not support variable length arrays using the (‘Q’ format) due to difficult to
overcome ambiguities. What this means is that this file format cannot support VLA columns in tables
stored in files that are over 2 GB in size.

For column data representing a bit field (‘X’ format), each bit value in the field is output right-justified
in a 21-character field as 1 (for true) or 0 (for false).

• cdfile: Each line of the column definitions file provides the definitions for one column in the table. The
line is broken up into 8, sixteen-character fields. The first field provides the column name (TTYPEn).
The second field provides the column format (TFORMn). The third field provides the display format
(TDISPn). The fourth field provides the physical units (TUNITn). The fifth field provides the di-
mensions for a multidimensional array (TDIMn). The sixth field provides the value that signifies an
undefined value (TNULLn). The seventh field provides the scale factor (TSCALn). The eighth field
provides the offset value (TZEROn). A field value of "" is used to represent the case where no value
is provided.

• hfile: Each line of the header parameters file provides the definition of a single HDU header card as
represented by the card image.

filebytes()
Calculates and returns the number of bytes that this HDU will write to a file.

fileinfo()
Returns a dictionary detailing information about the locations of this HDU within any associated file.
The values are only valid after a read or write of the associated file with no intervening changes to the
HDUList.

Returns
dict or None

The dictionary details information about the locations of this HDU within an associated
file. Returns None when the HDU is not associated with a file.

Dictionary contents:

1.9. Reference/API 185

https://docs.python.org/2/library/constants.html#None

PyFITS Documentation, Release 3.4

Key Value
file File object associated with the HDU
file-
mode

Mode in which the file was opened (readonly, copyonwrite, update,
append, ostream)

hdrLoc Starting byte location of header in file
datLoc Starting byte location of data block in file
datSpan Data size including padding

from_columns(columns, header=None, nrows=0, fill=False, **kwargs)
Given either a ColDefs object, a sequence of Column objects, or another table HDU or table data (a
FITS_rec or multi-field numpy.ndarray or numpy.recarray object, return a new table HDU of
the class this method was called on using the column definition from the input.

This is an alternative to the now deprecated new_table function, and otherwise accepts the same argu-
ments. See also FITS_rec.from_columns.

Parameters
columns : sequence of Column, ColDefs, or other

The columns from which to create the table data, or an object with a column-like
structure from which a ColDefs can be instantiated. This includes an existing
BinTableHDU or TableHDU , or a numpy.recarray to give some examples.

If these columns have data arrays attached that data may be used in initializing the new
table. Otherwise the input columns will be used as a template for a new table with the
requested number of rows.

header : Header

An optional Header object to instantiate the new HDU yet. Header keywords specif-
ically related to defining the table structure (such as the “TXXXn” keywords like
TTYPEn) will be overridden by the supplied column definitions, but all other infor-
mational and data model-specific keywords are kept.

nrows : int

Number of rows in the new table. If the input columns have data associated with them,
the size of the largest input column is used. Otherwise the default is 0.

fill : bool

If True, will fill all cells with zeros or blanks. If False, copy the data from input,
undefined cells will still be filled with zeros/blanks.

Notes

Any additional keyword arguments accepted by the HDU class’s __init__ may also be passed in as
keyword arguments.

fromstring(data, checksum=False, ignore_missing_end=False, **kwargs)
Creates a new HDU object of the appropriate type from a string containing the HDU’s entire header and,
optionally, its data.

Note: When creating a new HDU from a string without a backing file object, the data of that HDU may be
read-only. It depends on whether the underlying string was an immutable Python str/bytes object, or some
kind of read-write memory buffer such as a memoryview.

Parameters
data : str, bytearray, memoryview, ndarray

A byte string containing the HDU’s header and data.

186 Chapter 1. Introduction

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/stdtypes.html#memoryview

PyFITS Documentation, Release 3.4

checksum : bool, optional

Check the HDU’s checksum and/or datasum.

ignore_missing_end : bool, optional

Ignore a missing end card in the header data. Note that without the end card the end of
the header may be ambiguous and resulted in a corrupt HDU. In this case the assump-
tion is that the first 2880 block that does not begin with valid FITS header data is the
beginning of the data.

kwargs : optional

May consist of additional keyword arguments specific to an HDU type–these corre-
spond to keywords recognized by the constructors of different HDU classes such as
PrimaryHDU , ImageHDU , or BinTableHDU . Any unrecognized keyword argu-
ments are simply ignored.

load(datafile, cdfile=None, hfile=None, replace=False, header=None)
Create a table from the input ASCII files. The input is from up to three separate files, one containing
column definitions, one containing header parameters, and one containing column data.

The column definition and header parameters files are not required. When absent the column definitions
and/or header parameters are taken from the header object given in the header argument; otherwise sensible
defaults are inferred (though this mode is not recommended).

Parameters
datafile : file path, file object or file-like object

Input data file containing the table data in ASCII format.

cdfile : file path, file object, file-like object, optional

Input column definition file containing the names, formats, display formats, physical
units, multidimensional array dimensions, undefined values, scale factors, and offsets
associated with the columns in the table. If None, the column definitions are taken
from the current values in this object.

hfile : file path, file object, file-like object, optional

Input parameter definition file containing the header parameter definitions to be associ-
ated with the table. If None, the header parameter definitions are taken from the current
values in this objects header.

replace : bool

When True, indicates that the entire header should be replaced with the contents of the
ASCII file instead of just updating the current header.

header : Header object

When the cdfile and hfile are missing, use this Header object in the creation of the
new table and HDU. Otherwise this Header supercedes the keywords from hfile, which
is only used to update values not present in this Header, unless replace=True in
which this Header’s values are completely replaced with the values from hfile.

Notes

The primary use for the load method is to allow the input of ASCII data that was edited in a standard text
editor of the table data and parameters. The dump method can be used to create the initial ASCII files.

1.9. Reference/API 187

https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#True

PyFITS Documentation, Release 3.4

• datafile: Each line of the data file represents one row of table data. The data is output one column at
a time in column order. If a column contains an array, each element of the column array in the current
row is output before moving on to the next column. Each row ends with a new line.

Integer data is output right-justified in a 21-character field followed by a blank. Floating point data
is output right justified using ‘g’ format in a 21-character field with 15 digits of precision, followed
by a blank. String data that does not contain whitespace is output left-justified in a field whose width
matches the width specified in the TFORM header parameter for the column, followed by a blank.
When the string data contains whitespace characters, the string is enclosed in quotation marks ("").
For the last data element in a row, the trailing blank in the field is replaced by a new line character.

For column data containing variable length arrays (‘P’ format), the array data is preceded by the string
'VLA_Length= ' and the integer length of the array for that row, left-justified in a 21-character
field, followed by a blank.

Note: This format does not support variable length arrays using the (‘Q’ format) due to difficult to
overcome ambiguities. What this means is that this file format cannot support VLA columns in tables
stored in files that are over 2 GB in size.

For column data representing a bit field (‘X’ format), each bit value in the field is output right-justified
in a 21-character field as 1 (for true) or 0 (for false).

• cdfile: Each line of the column definitions file provides the definitions for one column in the table. The
line is broken up into 8, sixteen-character fields. The first field provides the column name (TTYPEn).
The second field provides the column format (TFORMn). The third field provides the display format
(TDISPn). The fourth field provides the physical units (TUNITn). The fifth field provides the di-
mensions for a multidimensional array (TDIMn). The sixth field provides the value that signifies an
undefined value (TNULLn). The seventh field provides the scale factor (TSCALn). The eighth field
provides the offset value (TZEROn). A field value of "" is used to represent the case where no value
is provided.

• hfile: Each line of the header parameters file provides the definition of a single HDU header card as
represented by the card image.

readfrom(fileobj, checksum=False, ignore_missing_end=False, **kwargs)
Read the HDU from a file. Normally an HDU should be opened with open() which reads the entire
HDU list in a FITS file. But this method is still provided for symmetry with writeto().

Parameters
fileobj : file object or file-like object

Input FITS file. The file’s seek pointer is assumed to be at the beginning of the HDU.

checksum : bool

If True, verifies that both DATASUM and CHECKSUM card values (when present in the
HDU header) match the header and data of all HDU’s in the file.

ignore_missing_end : bool

Do not issue an exception when opening a file that is missing an END card in the last
header.

req_cards(keyword, pos, test, fix_value, option, errlist)
Check the existence, location, and value of a required Card.

Parameters
keyword : str

The keyword to validate

188 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#True

PyFITS Documentation, Release 3.4

pos : int, callable

If an int, this specifies the exact location this card should have in the header. Remem-
ber that Python is zero-indexed, so this means pos=0 requires the card to be the first
card in the header. If given a callable, it should take one argument–the actual position
of the keyword–and return True or False. This can be used for custom evaluation.
For example if pos=lambda idx: idx > 10 this will check that the keyword’s
index is greater than 10.

test : callable

This should be a callable (generally a function) that is passed the value of the given
keyword and returns True or False. This can be used to validate the value associated
with the given keyword.

fix_value : str, int, float, complex, bool, None

A valid value for a FITS keyword to to use if the given test fails to replace an invalid
value. In other words, this provides a default value to use as a replacement if the key-
word’s current value is invalid. If None, there is no replacement value and the keyword
is unfixable.

option : str

Output verification option. Must be one of "fix", "silentfix", "ignore",
"warn", or "exception". May also be any combination of "fix"
or "silentfix" with "+ignore", +warn, or +exception" (e.g.
``"fix+warn"). See Verification options for more info.

errlist : list

A list of validation errors already found in the FITS file; this is used primarily for
the validation system to collect errors across multiple HDUs and multiple calls to
req_cards.

Notes

If pos=None, the card can be anywhere in the header. If the card does not exist, the new card will have
the fix_value as its value when created. Also check the card’s value by using the test argument.

run_option(option=’warn’, err_text=’‘, fix_text=’Fixed.’, fix=None, fixable=True)
Execute the verification with selected option.

scale(type=None, option=’old’, bscale=1, bzero=0)
Scale image data by using BSCALE and BZERO.

Calling this method will scale self.data and update the keywords of BSCALE and BZERO in self.
_header and self._image_header. This method should only be used right before writing to the
output file, as the data will be scaled and is therefore not very usable after the call.

Parameters
type : str, optional

destination data type, use a string representing a numpy dtype name, (e.g. 'uint8',
'int16', 'float32' etc.). If is None, use the current data type.

option : str, optional

how to scale the data: if "old", use the original BSCALE and BZERO values when the
data was read/created. If "minmax", use the minimum and maximum of the data to
scale. The option will be overwritten by any user-specified bscale/bzero values.

bscale, bzero : int, optional

1.9. Reference/API 189

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#False
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None

PyFITS Documentation, Release 3.4

user specified BSCALE and BZERO values.

update()
Update header keywords to reflect recent changes of columns.

updateCompressedData(*args, **kwargs)
Deprecated since version 3.2: Use (refactor your code) instead.

updateHeader(*args, **kwargs)
Deprecated since version 3.2: Use (refactor your code; this function no longer does anything) instead.

updateHeaderData(*args, **kwargs)
Deprecated since version 3.2: Use (refactor your code) instead.

update_ext_name(*args, **kwargs)
Deprecated since version 3.2: Use the .name attribute or Header.set instead.

Update the extension name associated with the HDU.

If the keyword already exists in the Header, it’s value and/or comment will be updated. If it does not exist,
a new card will be created and it will be placed before or after the specified location. If no before or
after is specified, it will be appended at the end.

Parameters
value : str

Value to be used for the new extension name

comment : str, optional

To be used for updating, default=None.

before : str or int, optional

Name of the keyword, or index of the Card before which the new card will be placed in
the Header. The argument before takes precedence over after if both are specified.

after : str or int, optional

Name of the keyword, or index of the Card after which the new card will be placed in
the Header

savecomment : bool, optional

When True, preserve the current comment for an existing keyword. The argument
savecomment takes precedence over comment if both specified. If comment is not
specified then the current comment will automatically be preserved.

update_ext_version(*args, **kwargs)
Deprecated since version 3.2: Use the .ver attribute or Header.set instead.

Update the extension version associated with the HDU.

If the keyword already exists in the Header, it’s value and/or comment will be updated. If it does not exist,
a new card will be created and it will be placed before or after the specified location. If no before or
after is specified, it will be appended at the end.

Parameters
value : str

Value to be used for the new extension version

comment : str, optional

To be used for updating; default=None.

190 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#True

PyFITS Documentation, Release 3.4

before : str or int, optional

Name of the keyword, or index of the Card before which the new card will be placed in
the Header. The argument before takes precedence over after if both are specified.

after : str or int, optional

Name of the keyword, or index of the Card after which the new card will be placed in
the Header.

savecomment : bool, optional

When True, preserve the current comment for an existing keyword. The argument
savecomment takes precedence over comment if both specified. If comment is not
specified then the current comment will automatically be preserved.

verify(option=’warn’)
Verify all values in the instance.

Parameters
option : str

Output verification option. Must be one of "fix", "silentfix", "ignore",
"warn", or "exception". May also be any combination of "fix"
or "silentfix" with "+ignore", +warn, or +exception" (e.g.
``"fix+warn"). See Verification options for more info.

verify_checksum(blocking=’standard’)
Verify that the value in the CHECKSUM keyword matches the value calculated for the current HDU
CHECKSUM.

blocking
[str, optional] “standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

Returns
valid : int

• 0 - failure

• 1 - success

• 2 - no CHECKSUM keyword present

verify_datasum(blocking=’standard’)
Verify that the value in the DATASUM keyword matches the value calculated for the DATASUM of the
current HDU data.

blocking
[str, optional] “standard” or “nonstandard”, compute sum 2880 bytes at a time, or not

Returns
valid : int

• 0 - failure

• 1 - success

• 2 - no DATASUM keyword present

writeto(name, output_verify=’exception’, clobber=False, checksum=False)
Works similarly to the normal writeto(), but prepends a default PrimaryHDU are required by extension
HDUs (which cannot stand on their own).

1.9. Reference/API 191

https://docs.python.org/2/library/constants.html#True

PyFITS Documentation, Release 3.4

columns
The ColDefs objects describing the columns in this table.

compData
Deprecated since version 3.2: Use the .compressed_data attribute instead.

shape
Shape of the image array–should be equivalent to self.data.shape.

size
Size (in bytes) of the data portion of the HDU.

Section

class pyfits.Section(hdu)
Bases: object

Image section.

Slices of this object load the corresponding section of an image array from the underlying FITS file on disk, and
applies any BSCALE/BZERO factors.

Section slices cannot be assigned to, and modifications to a section are not saved back to the underlying file.

See the Data Sections section of the PyFITS documentation for more details.

1.9.8 Differs

Facilities for diffing two FITS files. Includes objects for diffing entire FITS files, individual HDUs, FITS headers, or
just FITS data.

Used to implement the fitsdiff program.

FITSDiff

class pyfits.FITSDiff(a, b, ignore_keywords=[], ignore_comments=[], ignore_fields=[], numdiffs=10,
tolerance=0.0, ignore_blanks=True, ignore_blank_cards=True)

Bases: pyfits.diff._BaseDiff

Diff two FITS files by filename, or two HDUList objects.

FITSDiff objects have the following diff attributes:

• diff_hdu_count: If the FITS files being compared have different numbers of HDUs, this contains a
2-tuple of the number of HDUs in each file.

• diff_hdus: If any HDUs with the same index are different, this contains a list of 2-tuples of the HDU
index and the HDUDiff object representing the differences between the two HDUs.

Parameters
a : str or HDUList

The filename of a FITS file on disk, or an HDUList object.

b : str or HDUList

The filename of a FITS file on disk, or an HDUList object to compare to the first file.

ignore_keywords : sequence, optional

192 Chapter 1. Introduction

https://docs.python.org/2/library/functions.html#object

PyFITS Documentation, Release 3.4

Header keywords to ignore when comparing two headers; the presence of these key-
words and their values are ignored. Wildcard strings may also be included in the list.

ignore_comments : sequence, optional

A list of header keywords whose comments should be ignored in the comparison. May
contain wildcard strings as with ignore_keywords.

ignore_fields : sequence, optional

The (case-insensitive) names of any table columns to ignore if any table data is to be
compared.

numdiffs : int, optional

The number of pixel/table values to output when reporting HDU data differences.
Though the count of differences is the same either way, this allows controlling the num-
ber of different values that are kept in memory or output. If a negative value is given,
then numdiffs is treated as unlimited (default: 10).

tolerance : float, optional

The relative difference to allow when comparing two float values either in header values,
image arrays, or table columns (default: 0.0).

ignore_blanks : bool, optional

Ignore extra whitespace at the end of string values either in headers or data. Extra
leading whitespace is not ignored (default: True).

ignore_blank_cards : bool, optional

Ignore all cards that are blank, i.e. they only contain whitespace (default: True).

fromdiff(other, a, b)
Returns a new Diff object of a specific subclass from an existing diff object, passing on the values for any
arguments they share in common (such as ignore_keywords).

For example:

>>> from pyfits import HDUList, Header, FITSDiff
>>> hdul1, hdul2 = HDUList(), HDUList()
>>> headera, headerb = Header(), Header()
>>> fd = FITSDiff(hdul1, hdul2, ignore_keywords=['*'])
>>> hd = HeaderDiff.fromdiff(fd, headera, headerb)
>>> list(hd.ignore_keywords)
['*']

report(fileobj=None, indent=0, clobber=False)
Generates a text report on the differences (if any) between two objects, and either returns it as a string or
writes it to a file-like object.

Parameters
fileobj : file-like object, string, or None (optional)

If None, this method returns the report as a string. Otherwise it returns None and
writes the report to the given file-like object (which must have a .write() method at
a minimum), or to a new file at the path specified.

indent : int

The number of 4 space tabs to indent the report.

clobber : bool

1.9. Reference/API 193

https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None

PyFITS Documentation, Release 3.4

Whether the report output should overwrite an existing file, when fileobj is specified as
a path.

Returns
report : str or None

identical
True if all the .diff_* attributes on this diff instance are empty, implying that no differences were
found.

Any subclass of _BaseDiff must have at least one .diff_* attribute, which contains a non-empty
value if and only if some difference was found between the two objects being compared.

HDUDiff

class pyfits.HDUDiff(a, b, ignore_keywords=[], ignore_comments=[], ignore_fields=[], numdiffs=10,
tolerance=0.0, ignore_blanks=True, ignore_blank_cards=True)

Bases: pyfits.diff._BaseDiff

Diff two HDU objects, including their headers and their data (but only if both HDUs contain the same type of
data (image, table, or unknown).

HDUDiff objects have the following diff attributes:

• diff_extnames: If the two HDUs have different EXTNAME values, this contains a 2-tuple of the
different extension names.

• diff_extvers: If the two HDUS have different EXTVER values, this contains a 2-tuple of the different
extension versions.

• diff_extlevels: If the two HDUs have different EXTLEVEL values, this contains a 2-tuple of the
different extension levels.

• diff_extension_types: If the two HDUs have different XTENSION values, this contains a 2-tuple
of the different extension types.

• diff_headers: Contains a HeaderDiff object for the headers of the two HDUs. This will always
contain an object–it may be determined whether the headers are different through diff_headers.
identical.

• diff_data: Contains either a ImageDataDiff, TableDataDiff, or RawDataDiff as appro-
priate for the data in the HDUs, and only if the two HDUs have non-empty data of the same type
(RawDataDiff is used for HDUs containing non-empty data of an indeterminate type).

See FITSDiff for explanations of the initialization parameters.

fromdiff(other, a, b)
Returns a new Diff object of a specific subclass from an existing diff object, passing on the values for any
arguments they share in common (such as ignore_keywords).

For example:

>>> from pyfits import HDUList, Header, FITSDiff
>>> hdul1, hdul2 = HDUList(), HDUList()
>>> headera, headerb = Header(), Header()
>>> fd = FITSDiff(hdul1, hdul2, ignore_keywords=['*'])
>>> hd = HeaderDiff.fromdiff(fd, headera, headerb)
>>> list(hd.ignore_keywords)
['*']

194 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#True

PyFITS Documentation, Release 3.4

report(fileobj=None, indent=0, clobber=False)
Generates a text report on the differences (if any) between two objects, and either returns it as a string or
writes it to a file-like object.

Parameters
fileobj : file-like object, string, or None (optional)

If None, this method returns the report as a string. Otherwise it returns None and
writes the report to the given file-like object (which must have a .write() method at
a minimum), or to a new file at the path specified.

indent : int

The number of 4 space tabs to indent the report.

clobber : bool

Whether the report output should overwrite an existing file, when fileobj is specified as
a path.

Returns
report : str or None

identical
True if all the .diff_* attributes on this diff instance are empty, implying that no differences were
found.

Any subclass of _BaseDiff must have at least one .diff_* attribute, which contains a non-empty
value if and only if some difference was found between the two objects being compared.

HeaderDiff

class pyfits.HeaderDiff(a, b, ignore_keywords=[], ignore_comments=[], tolerance=0.0, ig-
nore_blanks=True, ignore_blank_cards=True)

Bases: pyfits.diff._BaseDiff

Diff two Header objects.

HeaderDiff objects have the following diff attributes:

• diff_keyword_count: If the two headers contain a different number of keywords, this contains a
2-tuple of the keyword count for each header.

• diff_keywords: If either header contains one or more keywords that don’t appear at all in the other
header, this contains a 2-tuple consisting of a list of the keywords only appearing in header a, and a list of
the keywords only appearing in header b.

• diff_duplicate_keywords: If a keyword appears in both headers at least once, but contains a
different number of duplicates (for example, a different number of HISTORY cards in each header), an
item is added to this dict with the keyword as the key, and a 2-tuple of the different counts of that keyword
as the value. For example:

{'HISTORY': (20, 19)}

means that header a contains 20 HISTORY cards, while header b contains only 19 HISTORY cards.

• diff_keyword_values: If any of the common keyword between the two headers have different val-
ues, they appear in this dict. It has a structure similar to diff_duplicate_keywords, with the
keyword as the key, and a 2-tuple of the different values as the value. For example:

1.9. Reference/API 195

https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#True

PyFITS Documentation, Release 3.4

{'NAXIS': (2, 3)}

means that the NAXIS keyword has a value of 2 in header a, and a value of 3 in header b. This excludes
any keywords matched by the ignore_keywords list.

• diff_keyword_comments: Like diff_keyword_values, but contains differences between key-
word comments.

HeaderDiff objects also have a common_keywords attribute that lists all keywords that appear in both
headers.

See FITSDiff for explanations of the initialization parameters.

fromdiff(other, a, b)
Returns a new Diff object of a specific subclass from an existing diff object, passing on the values for any
arguments they share in common (such as ignore_keywords).

For example:

>>> from pyfits import HDUList, Header, FITSDiff
>>> hdul1, hdul2 = HDUList(), HDUList()
>>> headera, headerb = Header(), Header()
>>> fd = FITSDiff(hdul1, hdul2, ignore_keywords=['*'])
>>> hd = HeaderDiff.fromdiff(fd, headera, headerb)
>>> list(hd.ignore_keywords)
['*']

report(fileobj=None, indent=0, clobber=False)
Generates a text report on the differences (if any) between two objects, and either returns it as a string or
writes it to a file-like object.

Parameters
fileobj : file-like object, string, or None (optional)

If None, this method returns the report as a string. Otherwise it returns None and
writes the report to the given file-like object (which must have a .write() method at
a minimum), or to a new file at the path specified.

indent : int

The number of 4 space tabs to indent the report.

clobber : bool

Whether the report output should overwrite an existing file, when fileobj is specified as
a path.

Returns
report : str or None

identical
True if all the .diff_* attributes on this diff instance are empty, implying that no differences were
found.

Any subclass of _BaseDiff must have at least one .diff_* attribute, which contains a non-empty
value if and only if some difference was found between the two objects being compared.

ImageDataDiff

class pyfits.ImageDataDiff(a, b, numdiffs=10, tolerance=0.0)
Bases: pyfits.diff._BaseDiff

196 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#True

PyFITS Documentation, Release 3.4

Diff two image data arrays (really any array from a PRIMARY HDU or an IMAGE extension HDU, though the
data unit is assumed to be “pixels”).

ImageDataDiff objects have the following diff attributes:

• diff_dimensions: If the two arrays contain either a different number of dimensions or different sizes
in any dimension, this contains a 2-tuple of the shapes of each array. Currently no further comparison is
performed on images that don’t have the exact same dimensions.

• diff_pixels: If the two images contain any different pixels, this contains a list of 2-tuples of the array
index where the difference was found, and another 2-tuple containing the different values. For example, if
the pixel at (0, 0) contains different values this would look like:

[(0, 0), (1.1, 2.2)]

where 1.1 and 2.2 are the values of that pixel in each array. This array only contains up to self.
numdiffs differences, for storage efficiency.

• diff_total: The total number of different pixels found between the arrays. Although diff_pixels
does not necessarily contain all the different pixel values, this can be used to get a count of the total number
of differences found.

• diff_ratio: Contains the ratio of diff_total to the total number of pixels in the arrays.

See FITSDiff for explanations of the initialization parameters.

fromdiff(other, a, b)
Returns a new Diff object of a specific subclass from an existing diff object, passing on the values for any
arguments they share in common (such as ignore_keywords).

For example:

>>> from pyfits import HDUList, Header, FITSDiff
>>> hdul1, hdul2 = HDUList(), HDUList()
>>> headera, headerb = Header(), Header()
>>> fd = FITSDiff(hdul1, hdul2, ignore_keywords=['*'])
>>> hd = HeaderDiff.fromdiff(fd, headera, headerb)
>>> list(hd.ignore_keywords)
['*']

report(fileobj=None, indent=0, clobber=False)
Generates a text report on the differences (if any) between two objects, and either returns it as a string or
writes it to a file-like object.

Parameters
fileobj : file-like object, string, or None (optional)

If None, this method returns the report as a string. Otherwise it returns None and
writes the report to the given file-like object (which must have a .write() method at
a minimum), or to a new file at the path specified.

indent : int

The number of 4 space tabs to indent the report.

clobber : bool

Whether the report output should overwrite an existing file, when fileobj is specified as
a path.

Returns
report : str or None

1.9. Reference/API 197

https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None

PyFITS Documentation, Release 3.4

identical
True if all the .diff_* attributes on this diff instance are empty, implying that no differences were
found.

Any subclass of _BaseDiff must have at least one .diff_* attribute, which contains a non-empty
value if and only if some difference was found between the two objects being compared.

RawDataDiff

class pyfits.RawDataDiff(a, b, numdiffs=10)
Bases: pyfits.diff.ImageDataDiff

RawDataDiff is just a special case of ImageDataDiff where the images are one-dimensional, and the
data is treated as a 1-dimensional array of bytes instead of pixel values. This is used to compare the data of two
non-standard extension HDUs that were not recognized as containing image or table data.

ImageDataDiff objects have the following diff attributes:

• diff_dimensions: Same as the diff_dimensions attribute of ImageDataDiff objects.
Though the “dimension” of each array is just an integer representing the number of bytes in the data.

• diff_bytes: Like the diff_pixels attribute of ImageDataDiff objects, but renamed to reflect
the minor semantic difference that these are raw bytes and not pixel values. Also the indices are integers
instead of tuples.

• diff_total and diff_ratio: Same as ImageDataDiff.

See FITSDiff for explanations of the initialization parameters.

fromdiff(other, a, b)
Returns a new Diff object of a specific subclass from an existing diff object, passing on the values for any
arguments they share in common (such as ignore_keywords).

For example:

>>> from pyfits import HDUList, Header, FITSDiff
>>> hdul1, hdul2 = HDUList(), HDUList()
>>> headera, headerb = Header(), Header()
>>> fd = FITSDiff(hdul1, hdul2, ignore_keywords=['*'])
>>> hd = HeaderDiff.fromdiff(fd, headera, headerb)
>>> list(hd.ignore_keywords)
['*']

report(fileobj=None, indent=0, clobber=False)
Generates a text report on the differences (if any) between two objects, and either returns it as a string or
writes it to a file-like object.

Parameters
fileobj : file-like object, string, or None (optional)

If None, this method returns the report as a string. Otherwise it returns None and
writes the report to the given file-like object (which must have a .write() method at
a minimum), or to a new file at the path specified.

indent : int

The number of 4 space tabs to indent the report.

clobber : bool

Whether the report output should overwrite an existing file, when fileobj is specified as
a path.

198 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#True
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None

PyFITS Documentation, Release 3.4

Returns
report : str or None

identical
True if all the .diff_* attributes on this diff instance are empty, implying that no differences were
found.

Any subclass of _BaseDiff must have at least one .diff_* attribute, which contains a non-empty
value if and only if some difference was found between the two objects being compared.

TableDataDiff

class pyfits.TableDataDiff(a, b, ignore_fields=[], numdiffs=10, tolerance=0.0)
Bases: pyfits.diff._BaseDiff

Diff two table data arrays. It doesn’t matter whether the data originally came from a binary or ASCII table–the
data should be passed in as a recarray.

TableDataDiff objects have the following diff attributes:

• diff_column_count: If the tables being compared have different numbers of columns, this contains
a 2-tuple of the column count in each table. Even if the tables have different column counts, an attempt is
still made to compare any columns they have in common.

• diff_columns: If either table contains columns unique to that table, either in name or format, this
contains a 2-tuple of lists. The first element is a list of columns (these are full Column objects) that
appear only in table a. The second element is a list of tables that appear only in table b. This only lists
columns with different column definitions, and has nothing to do with the data in those columns.

• diff_column_names: This is like diff_columns, but lists only the names of columns unique to
either table, rather than the full Column objects.

• diff_column_attributes: Lists columns that are in both tables but have different secondary at-
tributes, such as TUNIT or TDISP. The format is a list of 2-tuples: The first a tuple of the column name
and the attribute, the second a tuple of the different values.

• diff_values: TableDataDiff compares the data in each table on a column-by-column basis. If
any different data is found, it is added to this list. The format of this list is similar to the diff_pixels
attribute on ImageDataDiff objects, though the “index” consists of a (column_name, row) tuple. For
example:

[('TARGET', 0), ('NGC1001', 'NGC1002')]

shows that the tables contain different values in the 0-th row of the ‘TARGET’ column.

• diff_total and diff_ratio: Same as ImageDataDiff.

TableDataDiff objects also have a common_columns attribute that lists the Column objects for columns
that are identical in both tables, and a common_column_names attribute which contains a set of the names
of those columns.

See FITSDiff for explanations of the initialization parameters.

fromdiff(other, a, b)
Returns a new Diff object of a specific subclass from an existing diff object, passing on the values for any
arguments they share in common (such as ignore_keywords).

For example:

1.9. Reference/API 199

https://docs.python.org/2/library/constants.html#True

PyFITS Documentation, Release 3.4

>>> from pyfits import HDUList, Header, FITSDiff
>>> hdul1, hdul2 = HDUList(), HDUList()
>>> headera, headerb = Header(), Header()
>>> fd = FITSDiff(hdul1, hdul2, ignore_keywords=['*'])
>>> hd = HeaderDiff.fromdiff(fd, headera, headerb)
>>> list(hd.ignore_keywords)
['*']

report(fileobj=None, indent=0, clobber=False)
Generates a text report on the differences (if any) between two objects, and either returns it as a string or
writes it to a file-like object.

Parameters
fileobj : file-like object, string, or None (optional)

If None, this method returns the report as a string. Otherwise it returns None and
writes the report to the given file-like object (which must have a .write() method at
a minimum), or to a new file at the path specified.

indent : int

The number of 4 space tabs to indent the report.

clobber : bool

Whether the report output should overwrite an existing file, when fileobj is specified as
a path.

Returns
report : str or None

identical
True if all the .diff_* attributes on this diff instance are empty, implying that no differences were
found.

Any subclass of _BaseDiff must have at least one .diff_* attribute, which contains a non-empty
value if and only if some difference was found between the two objects being compared.

1.9.9 Verification options

There are 5 options for the output_verify argument of the following methods of HDUList: close(),
writeto(), and flush(), or the :meth:~_BaseHDU.writeto method on any HDU object. In these cases,
the verification option is passed to a :meth:verify call within these methods.

exception

This option will raise an exception if any FITS standard is violated. This is the default option for output (i.e. when
writeto(), close(), or flush() is called. If a user wants to overwrite this default on output, the other options
listed below can be used.

ignore

This option will ignore any FITS standard violation. On output, it will write the HDU List content to the output FITS
file, whether or not it is conforming to FITS standard.

The ignore option is useful in these situations, for example:

200 Chapter 1. Introduction

https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#None
https://docs.python.org/2/library/constants.html#True

PyFITS Documentation, Release 3.4

1. An input FITS file with non-standard is read and the user wants to copy or write out after some modification to
an output file. The non-standard will be preserved in such output file.

2. A user wants to create a non-standard FITS file on purpose, possibly for testing purpose.

No warning message will be printed out. This is like a silent warn (see below) option.

fix

This option wil try to fix any FITS standard violations. It is not always possible to fix such violations. In general, there
are two kinds of FITS standard violation: fixable and not fixable. For example, if a keyword has a floating number
with an exponential notation in lower case ‘e’ (e.g. 1.23e11) instead of the upper case ‘E’ as required by the FITS
standard, it’s a fixable violation. On the other hand, a keyword name like P.I. is not fixable, since it will not know
what to use to replace the disallowed periods. If a violation is fixable, this option will print out a message noting it is
fixed. If it is not fixable, it will throw an exception.

The principle behind the fixing is do no harm. For example, it is plausible to ‘fix’ a Card with a keyword name like
P.I. by deleting it, but PyFITS will not take such action to hurt the integrity of the data.

Not all fixes may be the “correct” fix, but at least PyFITS will try to make the fix in such a way that it will not throw
off other FITS readers.

silentfix

Same as fix, but will not print out informative messages. This may be useful in a large script where the user does not
want excessive harmless messages. If the violation is not fixable, it will still throw an exception.

warn

This option is the same as the ignore option but will send warning messages. It will not try to fix any FITS standard
violations whether fixable or not.

1.9.10 PyFITS Users Guide

Moved: Introduction

This page has been moved to PyFITS Documentation.

Moved: Quick Tutorial

This page has been moved to Quick Tutorial. .. currentmodule:: pyfits

Moved: FITS Headers

This page has been moved to FITS Headers.

Moved: Image Data

This page has been moved to Image Data.

1.9. Reference/API 201

PyFITS Documentation, Release 3.4

Moved: Table Data

This page has been moved to Table Data.

Moved: Verification

This page has been moved to Less Familiar Objects.

Moved: Less Familiar Objects

This page has been moved to Less Familiar Objects.

Moved: Executable Scripts

This page has been moved to Executable Scripts.

Moved: Miscellaneous Features

This page has been moved to Miscellaneous Features.

Moved: Reference Manual

This page has been moved to Reference Manual.

1.9.11 API Documentation

Moved: File Handling and Convenience Functions

This page has been moved to File Handling and Convenience Functions.

Moved: HDU Lists

This page has been moved to HDU Lists.

Moved: Header Data Units

This page has been moved to Header Data Units.

Moved: Headers

This page has been moved to Headers.

Moved: Cards

This page has been moved to Cards.

202 Chapter 1. Introduction

Moved: Tables

This page has been moved to Tables.

Moved: Images

This page has been moved to Images.

Moved: Differs

This page has been moved to Differs.

Moved: Verification options

This page has been moved to Verification options.

Index

A
add_blank() (pyfits.Header method), 144
add_checksum() (pyfits.BinTableHDU method), 153
add_checksum() (pyfits.CompImageHDU method), 183
add_checksum() (pyfits.GroupsHDU method), 135
add_checksum() (pyfits.ImageHDU method), 175
add_checksum() (pyfits.PrimaryHDU method), 129
add_checksum() (pyfits.TableHDU method), 161
add_col() (pyfits.ColDefs method), 169
add_comment() (pyfits.Header method), 144
add_datasum() (pyfits.BinTableHDU method), 154
add_datasum() (pyfits.CompImageHDU method), 184
add_datasum() (pyfits.GroupsHDU method), 135
add_datasum() (pyfits.ImageHDU method), 175
add_datasum() (pyfits.PrimaryHDU method), 129
add_datasum() (pyfits.TableHDU method), 162
add_history() (pyfits.Header method), 145
append() (in module pyfits), 120
append() (pyfits.HDUList method), 125
append() (pyfits.Header method), 145
array (pyfits.Column attribute), 168
ascii (pyfits.Column attribute), 168

B
BinTableHDU (class in pyfits), 153

C
Card (class in pyfits), 152
cards (pyfits.Header attribute), 151
change_attrib() (pyfits.ColDefs method), 169
change_name() (pyfits.ColDefs method), 169
change_unit() (pyfits.ColDefs method), 169
clear() (pyfits.Header method), 145
close() (pyfits.HDUList method), 125
close() (pyfits.StreamingHDU method), 143
ColDefs (class in pyfits), 168
Column (class in pyfits), 167
columns (pyfits.BinTableHDU attribute), 161
columns (pyfits.CompImageHDU attribute), 191

columns (pyfits.FITS_rec attribute), 171
columns (pyfits.TableHDU attribute), 167
comment (pyfits.Card attribute), 152
comments (pyfits.Header attribute), 152
compData (pyfits.CompImageHDU attribute), 192
CompImageHDU (class in pyfits), 181
copy() (pyfits.BinTableHDU method), 154
copy() (pyfits.Column method), 168
copy() (pyfits.CompImageHDU method), 184
copy() (pyfits.FITS_rec method), 170
copy() (pyfits.GroupsHDU method), 136
copy() (pyfits.Header method), 145
copy() (pyfits.ImageHDU method), 176
copy() (pyfits.PrimaryHDU method), 130
copy() (pyfits.TableHDU method), 162
count() (pyfits.Header method), 146

D
data (pyfits.GroupData attribute), 142
data (pyfits.GroupsHDU attribute), 141
data (pyfits.ImageHDU attribute), 180
data (pyfits.PrimaryHDU attribute), 134
del_col() (pyfits.ColDefs method), 169
delval() (in module pyfits), 124
dump() (pyfits.BinTableHDU method), 154
dump() (pyfits.CompImageHDU method), 184

E
extend() (pyfits.Header method), 146

F
field() (pyfits.FITS_rec method), 170
field() (pyfits.FITS_record method), 171
field_specifier (pyfits.Card attribute), 152
filebytes() (pyfits.BinTableHDU method), 155
filebytes() (pyfits.CompImageHDU method), 185
filebytes() (pyfits.GroupsHDU method), 136
filebytes() (pyfits.ImageHDU method), 176
filebytes() (pyfits.PrimaryHDU method), 130

205

PyFITS Documentation, Release 3.4

filebytes() (pyfits.TableHDU method), 163
fileinfo() (pyfits.BinTableHDU method), 155
fileinfo() (pyfits.CompImageHDU method), 185
fileinfo() (pyfits.GroupsHDU method), 136
fileinfo() (pyfits.HDUList method), 125
fileinfo() (pyfits.ImageHDU method), 176
fileinfo() (pyfits.PrimaryHDU method), 130
fileinfo() (pyfits.TableHDU method), 163
filename() (pyfits.HDUList method), 126
FITS_rec (class in pyfits), 170
FITS_record (class in pyfits), 171
FITSDiff (class in pyfits), 192
flush() (pyfits.HDUList method), 126
formats (pyfits.FITS_rec attribute), 171
from_columns() (pyfits.BinTableHDU method), 156
from_columns() (pyfits.CompImageHDU method), 186
from_columns() (pyfits.FITS_rec class method), 170
from_columns() (pyfits.GroupsHDU method), 136
from_columns() (pyfits.TableHDU method), 163
fromdiff() (pyfits.FITSDiff method), 193
fromdiff() (pyfits.HDUDiff method), 194
fromdiff() (pyfits.HeaderDiff method), 196
fromdiff() (pyfits.ImageDataDiff method), 197
fromdiff() (pyfits.RawDataDiff method), 198
fromdiff() (pyfits.TableDataDiff method), 199
fromfile() (pyfits.HDUList class method), 126
fromfile() (pyfits.Header class method), 146
fromkeys() (pyfits.Header class method), 147
fromstring() (pyfits.BinTableHDU method), 156
fromstring() (pyfits.Card class method), 152
fromstring() (pyfits.CompImageHDU method), 186
fromstring() (pyfits.GroupsHDU method), 137
fromstring() (pyfits.HDUList class method), 126
fromstring() (pyfits.Header class method), 147
fromstring() (pyfits.ImageHDU method), 176
fromstring() (pyfits.PrimaryHDU method), 130
fromstring() (pyfits.TableHDU method), 164
fromtextfile() (pyfits.Header class method), 148

G
get() (pyfits.Header method), 148
getdata() (in module pyfits), 121
getheader() (in module pyfits), 122
getval() (in module pyfits), 123
Group (class in pyfits), 142
GroupData (class in pyfits), 141
GroupsHDU (class in pyfits), 135

H
HDUDiff (class in pyfits), 194
HDUList (class in pyfits), 125
Header (class in pyfits), 144
HeaderDiff (class in pyfits), 195

I
identical (pyfits.FITSDiff attribute), 194
identical (pyfits.HDUDiff attribute), 195
identical (pyfits.HeaderDiff attribute), 196
identical (pyfits.ImageDataDiff attribute), 197
identical (pyfits.RawDataDiff attribute), 199
identical (pyfits.TableDataDiff attribute), 200
image (pyfits.Card attribute), 152
ImageDataDiff (class in pyfits), 196
ImageHDU (class in pyfits), 174
index() (pyfits.Header method), 148
index_of() (pyfits.HDUList method), 127
info() (in module pyfits), 120
info() (pyfits.ColDefs method), 169
info() (pyfits.HDUList method), 127
insert() (pyfits.HDUList method), 127
insert() (pyfits.Header method), 148
is_blank (pyfits.Card attribute), 152
items() (pyfits.Header method), 149
iteritems() (pyfits.Header method), 149
iterkeys() (pyfits.Header method), 149
itervalues() (pyfits.Header method), 149

K
keys() (pyfits.Header method), 149
keyword (pyfits.Card attribute), 153

L
length (pyfits.Card attribute), 153
load() (pyfits.BinTableHDU class method), 157
load() (pyfits.CompImageHDU method), 187

N
names (pyfits.FITS_rec attribute), 171
new_table() (in module pyfits), 171
normalize_keyword() (pyfits.Card class method), 152

O
open() (in module pyfits), 118

P
par() (pyfits.Group method), 142
par() (pyfits.GroupData method), 142
parnames (pyfits.GroupsHDU attribute), 141
pop() (pyfits.Header method), 149
popitem() (pyfits.Header method), 149
PrimaryHDU (class in pyfits), 128
pyfits (module), 118
pyfits.diff (module), 192
pyfits.scripts.fitscheck (module), 39
pyfits.scripts.fitsheader (module), 39
pyfits.scripts.fitsinfo (module), 38

206 Index

PyFITS Documentation, Release 3.4

R
RawDataDiff (class in pyfits), 198
rawkeyword (pyfits.Card attribute), 153
rawvalue (pyfits.Card attribute), 153
readall() (pyfits.HDUList method), 127
readfrom() (pyfits.BinTableHDU method), 158
readfrom() (pyfits.CompImageHDU method), 188
readfrom() (pyfits.GroupsHDU method), 137
readfrom() (pyfits.ImageHDU method), 177
readfrom() (pyfits.PrimaryHDU method), 131
readfrom() (pyfits.TableHDU method), 164
remove() (pyfits.Header method), 149
rename_keyword() (pyfits.Header method), 149
report() (pyfits.FITSDiff method), 193
report() (pyfits.HDUDiff method), 194
report() (pyfits.HeaderDiff method), 196
report() (pyfits.ImageDataDiff method), 197
report() (pyfits.RawDataDiff method), 198
report() (pyfits.TableDataDiff method), 200
req_cards() (pyfits.BinTableHDU method), 158
req_cards() (pyfits.CompImageHDU method), 188
req_cards() (pyfits.GroupsHDU method), 138
req_cards() (pyfits.ImageHDU method), 177
req_cards() (pyfits.PrimaryHDU method), 131
req_cards() (pyfits.TableHDU method), 164
run_option() (pyfits.BinTableHDU method), 159
run_option() (pyfits.Card method), 152
run_option() (pyfits.CompImageHDU method), 189
run_option() (pyfits.GroupsHDU method), 138
run_option() (pyfits.ImageHDU method), 178
run_option() (pyfits.PrimaryHDU method), 132
run_option() (pyfits.TableHDU method), 165

S
scale() (pyfits.CompImageHDU method), 189
scale() (pyfits.GroupsHDU method), 138
scale() (pyfits.ImageHDU method), 178
scale() (pyfits.PrimaryHDU method), 132
Section (class in pyfits), 192
section (pyfits.GroupsHDU attribute), 141
section (pyfits.ImageHDU attribute), 180
section (pyfits.PrimaryHDU attribute), 134
set() (pyfits.Header method), 149
setdefault() (pyfits.Header method), 150
setfield() (pyfits.FITS_record method), 171
setpar() (pyfits.Group method), 142
setval() (in module pyfits), 123
shape (pyfits.CompImageHDU attribute), 192
shape (pyfits.GroupsHDU attribute), 141
shape (pyfits.ImageHDU attribute), 180
shape (pyfits.PrimaryHDU attribute), 134
size (pyfits.BinTableHDU attribute), 161
size (pyfits.CompImageHDU attribute), 192
size (pyfits.GroupsHDU attribute), 141

size (pyfits.ImageHDU attribute), 180
size (pyfits.PrimaryHDU attribute), 134
size (pyfits.StreamingHDU attribute), 143
size (pyfits.TableHDU attribute), 167
StreamingHDU (class in pyfits), 142

T
TableDataDiff (class in pyfits), 199
tabledump() (in module pyfits), 172
TableHDU (class in pyfits), 161
tableload() (in module pyfits), 173
tofile() (pyfits.Header method), 150
tostring() (pyfits.Header method), 151
totextfile() (pyfits.Header method), 151

U
update() (in module pyfits), 121
update() (pyfits.BinTableHDU method), 159
update() (pyfits.CompImageHDU method), 190
update() (pyfits.Header method), 151
update() (pyfits.TableHDU method), 165
update_ext_name() (pyfits.BinTableHDU method), 159
update_ext_name() (pyfits.CompImageHDU method),

190
update_ext_name() (pyfits.GroupsHDU method), 139
update_ext_name() (pyfits.ImageHDU method), 178
update_ext_name() (pyfits.PrimaryHDU method), 132
update_ext_name() (pyfits.TableHDU method), 165
update_ext_version() (pyfits.BinTableHDU method), 160
update_ext_version() (pyfits.CompImageHDU method),

190
update_ext_version() (pyfits.GroupsHDU method), 139
update_ext_version() (pyfits.ImageHDU method), 179
update_ext_version() (pyfits.PrimaryHDU method), 132
update_ext_version() (pyfits.TableHDU method), 166
update_extend() (pyfits.HDUList method), 127
update_header() (pyfits.ImageHDU method), 179
updateCompressedData() (pyfits.CompImageHDU

method), 190
updateHeader() (pyfits.CompImageHDU method), 190
updateHeaderData() (pyfits.CompImageHDU method),

190

V
value (pyfits.Card attribute), 153
values() (pyfits.Header method), 151
verify() (pyfits.BinTableHDU method), 160
verify() (pyfits.Card method), 152
verify() (pyfits.CompImageHDU method), 191
verify() (pyfits.GroupsHDU method), 140
verify() (pyfits.ImageHDU method), 179
verify() (pyfits.PrimaryHDU method), 133
verify() (pyfits.TableHDU method), 166
verify_checksum() (pyfits.BinTableHDU method), 160

Index 207

PyFITS Documentation, Release 3.4

verify_checksum() (pyfits.CompImageHDU method),
191

verify_checksum() (pyfits.GroupsHDU method), 140
verify_checksum() (pyfits.ImageHDU method), 179
verify_checksum() (pyfits.PrimaryHDU method), 133
verify_checksum() (pyfits.TableHDU method), 166
verify_datasum() (pyfits.BinTableHDU method), 161
verify_datasum() (pyfits.CompImageHDU method), 191
verify_datasum() (pyfits.GroupsHDU method), 140
verify_datasum() (pyfits.ImageHDU method), 180
verify_datasum() (pyfits.PrimaryHDU method), 133
verify_datasum() (pyfits.TableHDU method), 167

W
write() (pyfits.StreamingHDU method), 143
writeto() (in module pyfits), 119
writeto() (pyfits.BinTableHDU method), 161
writeto() (pyfits.CompImageHDU method), 191
writeto() (pyfits.GroupsHDU method), 141
writeto() (pyfits.HDUList method), 127
writeto() (pyfits.ImageHDU method), 180
writeto() (pyfits.PrimaryHDU method), 134
writeto() (pyfits.TableHDU method), 167

208 Index

	Introduction
	Installation
	User Support
	Quick Tutorial
	Reading and Updating Existing FITS Files
	Creating a New FITS File
	Convenience Functions
	Users Guide
	Other Information
	Reference/API

